
FEEDBACK CODING FOR EFFICIENT INTERACTIVE MACHINE LEARNING

A Dissertation
Presented to

The Academic Faculty

By

Gregory Humberto Canal

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

August 2021

© Gregory Humberto Canal 2021

FEEDBACK CODING FOR EFFICIENT INTERACTIVE MACHINE LEARNING

Thesis committee:

Dr. Christopher Rozell
Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Mark Davenport
Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Matthieu Bloch
Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Yao Xie
Industrial and Systems Engineering
Georgia Institute of Technology

Dr. Robert Nowak
Electrical and Computer Engineering
University of Wisconsin-Madison

Date approved: June 21, 2021

We know the past but cannot control it. We control the future but cannot know it.

Claude Shannon

For my family, who instilled in me the value of curiosity, learning, and creating, and

without whom this work would not be possible.

ACKNOWLEDGMENTS

The greatest part about graduate school has been the opportunity to meet so many

extraordinary people along the way. First, I would like to thank my advisor Chris Rozell

for his mentorship and guidance throughout graduate school. It has been an incredible

experience working with you, and I am extremely grateful for the breadth and depth of an

education you have given me both inside and outside the lab, including how to improve

as a communicator and storyteller and helping me grow as an independent researcher and

person. I would like to thank Mark Davenport for his mentorship, our collaborations, and

for serving on my thesis committee; I am very lucky to have had Mark as another amazing

mentor throughout graduate school. In the latter part of my PhD, I had the wonderful

opportunity to connect and collaborate with Matthieu Bloch, who has shared with me many

fascinating discussions and insights about information theory, research, and beyond, and

who I am grateful to have on my committee. I would also like to thank Professor Yao Xie

and Professor Rob Nowak, who have kindly lent their time and expertise to serve on my

committee and provide feedback on my work.

I am incredibly lucky to have had the unique experience of being a member of the “Chil-

dren of the Norm” cohort, which has been an engaging and lively space for collaborations,

feedback, and discussions throughout graduate school. Chris, Mark, Justin Romberg and

Eva Dyer led by example in showing each of us students how to not only do solid technical

research, but also how to communicate clearly and tell a story in our research and careers,

and how to enjoy the best $3 IPA in town every Friday. I would like to especially thank

Justin for the fantastic core technical instruction you have given me in my PhD — your

courses in digital signal processing, statistical learning, and convex optimization provided

an invaluable foundation for my technical graduate education. As part of this cohort, I have

had the opportunity to make collaborations and friendships outside of my immediate lab

group, and thank (to name a few of the many) Andrew, Andy, Cole, Jihui, Kyle, Liangbei,

v

Michael, Namrata, Nauman, Ning, Rakshith, Santhosh, Sihan, Sohail, Thinh, and Tomer for

their friendship and support.

I am grateful for the collaborations, feedback, friendships, and endless support from all

of the awesome members (both past and present) of the SIP Lab that I have had the pleasure

to meet and work with: Adam C., Adam W., Ayse, Belén, John, Kion, Kyle, Marissa, Matt,

Nick, Pavel, Sankar, Shaoheng, Sippy, Siva, and Stefano; it has been a privilege to be a part

of this amazing group. I have learned so much from all of you, and graduate school would

not have been the same without you. I would like to acknowledge Marissa in particular, who

welcomed me to Georgia Tech as my ECE student mentor and helped me navigate my first

year of graduate school.

The Georgia Tech ECE department as a whole is full of amazing people who I could not

have earned this degree without. Thank you to all of my professors, including Professor Fekri

who captivated me with his course on information theory, and to the ECE administrators

including Angel Greenwood, Dr. Daniela Staiculescu, Pat Dixon, Raquel Plaskett, and Tasha

Torrence, who have been incredibly kind and helpful throughout my PhD.

Finally, I would like to thank my friends and family in general. Your support, love,

patience, and laughter has been more helpful than I could ever express in words, and I am

extremely lucky and thankful to have you in my life. To my parents, Humberto and Maureen,

my sister Aly and her husband Mike, and my Zeena, your love means everything to me and I

could not have come this far without you. My courageous grandma Ellen left her homeland

of Ireland for the U.S. when she was only 21 years old, with dreams of building a better life

for herself and raising a family with education as a top priority, which she never had the

opportunity to pursue herself. She and my Pop Pop, also an immigrant from Ireland, raised

my mom with this value in mind. My Mimi and Grandpa Canal similarly raised my dad to

always be curious, work hard, and love and support those around him. I owe everything I

have to my parents and family that came before me, and am forever grateful for their love

and support.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xi

List of Figures . xii

Summary . xvi

Chapter 1: Introduction . 1

Chapter 2: Background . 10

2.1 Mathematical Preliminaries . 10

2.2 Information Theory, Entropy, and Mutual Information 12

2.3 Channel Coding Theory . 17

2.3.1 Coding with Noiseless Feedback 21

2.3.2 Posterior Matching . 23

2.3.3 Posterior Matching over a Binary Symmetric Channel 24

2.4 Interactive Machine Learning . 26

Chapter 3: Interactive Brain-computer Interfacing for High-complexity Effector
Control . 31

3.1 Tradeoffs in Brain-Computer Interfacing 33

vii

3.2 Refining End Effector Behavior . 36

3.3 Dictionary Sorting Proficiency . 41

3.4 Full System Evaluation . 43

3.5 Generalizing Performance Tradeoffs . 46

3.6 Discussion . 49

Chapter 4: Interactive Object Segmentation with Noisy Binary Inputs 51

4.1 Interactive Image Segmentation . 51

4.2 Methods . 53

4.3 Results . 55

4.4 Discussion . 60

Chapter 5: Active Ordinal Querying for Tuplewise Similarity Learning 62

5.1 Relative Similarity Learning . 62

5.2 Related Work . 66

5.3 Methods . 67

5.3.1 Estimating Mutual Information . 70

5.3.2 Embedding Technique . 72

5.3.3 Tuple Response Model . 73

5.3.4 Adaptive Algorithm . 73

5.4 Experiments . 74

5.4.1 Datasets . 75

5.4.2 Evaluation Metrics . 76

5.4.3 Experimental Results . 77

viii

5.5 Discussion . 80

Chapter 6: Active Embedding Search via Noisy Paired Comparisons 82

6.1 Preference Searching with Paired Comparisons 82

6.2 Background . 84

6.2.1 Observation Model . 84

6.2.2 Related Work . 86

6.3 Query Selection . 87

6.3.1 Minimizing Estimation Error . 88

6.3.2 Information Theoretic Framework 89

6.3.3 Strategy 1: Equiprobable, Max-variance 92

6.3.4 Strategy 2: Mean-cut, Max-variance 95

6.4 Results . 97

6.4.1 Methods Comparison . 97

6.4.2 Mean Squared Error Evaluation 99

6.4.3 Item Ranking Evaluation . 99

6.5 Extension to Ideal Point Estimation with Dynamics 101

6.5.1 Measurement Selection . 102

6.5.2 Methods . 104

6.5.3 Explanatory Example . 106

6.5.4 Numerical Experiments . 107

6.6 Discussion . 109

Chapter 7: Feedback Coding for Active Learning 111

ix

7.1 Related Work . 112

7.2 Active Learning as a Communications Model 113

7.2.1 Optimal Feedback Coding . 116

7.2.2 Posterior Matching . 118

7.2.3 Approximate Posterior Matching 119

7.3 APM in Logistic Regression . 119

7.3.1 Closed-form Results . 120

7.4 Experimental Results . 123

7.5 Discussion . 128

Chapter 8: Conclusions and Future Work . 130

Appendices . 140

Appendix A: Methods and Supplementary Details for One-bit Human-Computer
Interaction . 141

Appendix B: Experimental Details in Tuplewise Similarity Learning 189

Appendix C: Proofs and Additional Details in Pairwise Search 192

Appendix D: Proofs and Additional Details in Feedback Coding for Active Learning216

References . 237

x

LIST OF TABLES

4.1 Mean F1 score vs. number of inputs. 58

7.1 Comparison of median cumulative time (s) for each method to select the
first 40 examples. 127

D.1 Full dataset information. 225

D.2 Cumulative selection time. 231

D.3 Cumulative VariationalEM time. 232

D.4 Cumulative running time. 233

xi

LIST OF FIGURES

1.1 One-dimensional threshold classification for different example selection
strategies. 2

2.1 Channel coding in a communications system. 20

2.2 Channel coding with feedback. 22

2.3 Posterior matching over a binary symmetric channel. 25

2.4 One-dimensional threshold classification as channel coding with feedback. . 29

3.1 One-bit interaction in human-computer interfaces. 32

3.2 Refining effector behavior through configuration sorting. 40

3.3 Evaluating configuration sorting proficiency in a user study. 42

3.4 End-to-end testing of full system with EEG inputs and swarm control. . . . 45

3.5 Performance as a function of number of inputs and dictionary size. 48

4.1 EllipseLex with post-processing. 53

4.2 Description and examples of ellipse lexicon. 55

4.3 Comparison of segmentation methods. 57

4.4 Final F1 score vs. relative segment area. 59

4.5 Final F1 score vs. object class. 60

5.1 Low-dimensional similarity embedding of images. 63

xii

5.2 Comparison of triplet and tuple relative similarity queries. 64

5.3 Embedding construction experimental results. 78

5.4 Tuplewise query empirical response time. 79

5.5 Response coherence in triplets vs. 5-tuples. 80

6.1 Visualization of hyperplane queries formed from paired comparisons. . . . 85

6.2 Pairwise search performance evaluation. 100

6.3 Paired comparisons for dynamical system estimation. 102

6.4 Stylized demonstration of MCMV-DF. 107

6.5 Tracking performance as observation noise (“obs”) and innovation noise
(“inn”) levels change. 109

6.6 Tracking performance as the number of candidate dynamics models K
increases. 110

7.1 Active learning as a feedback communications system. 115

7.2 Performance of APM in comparison to Uncertainty sampling on an illustra-
tive dataset. 122

7.3 Average test classification accuracy plotted against number of labeled exam-
ples across select UCI datasets and the synthetic cross dataset. 126

8.1 Sequential machine teaching as a communications system with feedback. . 134

A.1 Polygon dictionary parameters, specified relative to the swarm arena dimen-
sions. 167

A.2 Shape query for HIT cheating detection. 168

A.3 Gaussian mixture modeling for swarm density coverage. 168

A.4 Physical swarm control. 169

A.5 Motor imagery training. 169

xiii

A.6 Full SCINET feedback system. 170

A.7 Modeling a non-stationary input profile from empirical crossover data. . . . 170

A.8 Trend line analysis of individual participant performance over critical char-
acter comparisons of increasing depth. 173

A.9 Histogram of number of inputs until convergence. 174

A.10 Number of samples at each number of issued inputs, aggregated over all
virtual swarm trials. 175

A.11 Absolute deviation between guessed swarm configuration after each number
of inputs (guessed as posterior median) in comparison to target configuration,
for both virtual swarm control and simulated trials. 177

A.12 Log-ratio of classifier probability assigned to the correct input over the
probability assigned to the incorrect input, plotted against the number of
inputs issued in a trial. 180

A.13 Log-ratio of classifier probability assigned to the correct input over the
probability assigned to the incorrect input, grouped by inputs that were
classified correctly or incorrectly. 181

A.14 Performance as a function of number of inputs and dictionary size across
both fixed and non-stationary input errors, with conservative degrees of
freedom estimates. 183

A.15 Alphabet-wise performance metrics as a function of number of inputs and
dictionary size across both fixed and non-stationary input errors, with stan-
dard degrees of freedom estimates. 187

A.16 Alphabet-wise performance metrics as a function of number of inputs and
dictionary size across both fixed and non-stationary input errors, with con-
servative degrees of freedom estimates. 188

B.1 Supplementary experiments for tuplewise similarity learning. 189

C.1 Mean squared error performance across dimensions at a fixed number of
answered queries. 211

C.2 Triplet error fraction versus embedding dimension. 211

xiv

C.3 Mean squared error performance against cumulative compute time (s) for
matched, “normalized” logistic noise at various pair downsampling rates. . . 212

C.4 Mean squared error performance versus number of queries asked for pairwise
search in 3 dimensions. 213

C.5 Mean squared error performance versus number of queries asked for pairwise
search in 5 dimensions. 213

C.6 Mean squared error performance versus number of queries asked for pairwise
search in 7 dimensions. 214

C.7 Mean squared error performance versus number of queries asked for pairwise
search in 9 dimensions. 214

C.8 Mean squared error performance versus number of queries asked for pairwise
search in 12 dimensions. 215

D.1 Test accuracy on “Vehicle Silhouettes.” . 229

D.2 Test accuracy on “Letter Recognition.” . 229

D.3 Miscellaneous UCI datasets. 230

D.4 Synthetic datasets. 230

D.5 Test accuracy on vehicle-cars, over expanded method set. 234

D.6 Exploitation metric for vehicle-cars. 235

D.7 Exploration metrics for vehicle-cars. 236

xv

SUMMARY

When training supervised computational systems that learn from data, the most basic

scenario consists of the learning algorithm operating on a fixed batch of data, provided in its

entirety before training. However, there are a large number of applications ranging from

adaptive robotic sensing to human-in-the-loop drug discovery where there lies a choice

in which data points are selected for labeling, and where this choice can be made “on the

fly” after each selected data point is labeled. In such interactive machine learning (IML)

scenarios, the quality of interactions with the information source providing data labels has

a tremendous impact on the performance of the resulting system. At any point in time

during training, certain data points are more informative to label than others due to label

redundancy (similar data points provide superfluous labels) or different levels of noise (noisy

labels do not improve the learned model). By only labeling informative data points, it is

possible for systems trained in an interactive paradigm to learn a generalizable model with

far fewer labels than would be required otherwise. This reduced demand for data labels is

important in any setting where labels are expensive or time-consuming to acquire, such as

when soliciting the knowledge of a human expert.

To measure the informativeness of labeling any particular data point, it is common

practice to apply statistical tools from the field of information theory. However, using

these tools to directly estimate query informativeness over a large number of possible

data points can be computationally expensive, and in many applications such as real-time

human-computer interfacing, queries need to be selected with minimal computational

overhead. More fundamentally, as we explore in this work there sometimes exist convenient

query structures in IML that allow for computational and algorithmic advantages not

capitalized on by brute-force information maximization. In this thesis, we identify and

model query structures in IML to develop direct information maximization solutions as well

as approximations that allow for computationally efficient query selection. A major theme

xvi

of this work is the utilization of tools and concepts from feedback coding theory, which have

only seen limited application to IML.

Specifically, we frame IML as a feedback communications problem and directly apply

principles and algorithms from coding theory to design and analyze high-performing IML

systems that efficiently utilize interactions between the labeling expert and learner. As a

step towards integrating concepts from coding theory into IML, we directly apply a recently

developed feedback coding scheme to sequential human-computer interaction systems in-

cluding control of a robot swarm with a brain-computer interface [1] and interactive object

segmentation [2]. We then identify simplifying query structures to develop approximate

methods for efficient, informative query selection in interactive ordinal embedding construc-

tion [3] and preference learning systems [4, 5]. Finally, we combine the direct application

of feedback coding with approximate information maximization to design and analyze a

general active learning algorithm, which we study in detail for logistic regression [6].

xvii

CHAPTER 1

INTRODUCTION

Recent improvements in computational power, increased availability of large datasets, and

algorithmic advances have led to a surge in performance of machine learning systems across

a wide variety of settings. For instance, the ImageNet dataset contains over 14 million

labeled images across over 21,000 categories [7], and state-of-the-art methods have been

able to successfully classify this data with high accuracy [8]. However, is it imperative

to not only investigate how machine learning algorithms can be scaled to match larger

datasets, but also how one can be more judicious in the selection of training data itself. It is

crucial to select data intelligently for labeling in any learning scenario where data labels are

expensive, such as in some healthcare applications where a medical expert can only provide

a small set of labeled examples [9] or when selecting experiments for drug discovery from

a combinatorially large set of chemical possibilities [10, 11]. Even in settings rich with

labeled data, one may still wish to select data intelligently to reduce training memory and

compute time costs [12]. In cases such as these, it is advantageous to have a labeling expert

“in the loop” during training, where the expert and machine learner iteratively collaborate to

select data points for training that maximize learning efficiency. In this thesis, we broadly

refer to this type of learning as interactive machine learning (IML) [13].

As an example of the sample complexity benefits gained from having an expert in-the-

loop for data selection, consider the illustrative example in Figure 1.1 of a one-dimensional

threshold classifier (adapted from [14]). In this example, an expert assigns a label y ∈ {0, 1}

to each requested data point x ∈ R, each depicted as a circle. Labels are indicated by

circle texture, with solid, red (y = 1) or hatched, blue (y = 0) circles for labeled points,

and unfilled circles for unlabeled points. A learner predicts data labels with the threshold

function hθ(x) = 1x≤θ(x), parameterized by a threshold θ ∈ R.

1

θ θ̂

θ θ̂

θ θ̂

(a) Passive learning

θθ̂

θθ̂

θ̂θ

(b) Active learning

θ θ̂

θ̂ = θ

θ̂ = θ

(c) Machine teaching

Figure 1.1: One-dimensional threshold classification for different example selection strate-
gies, depicted vertically over three sequentially labeled examples for each method.

Suppose that an optimal (or “ground truth”) threshold θ exists that perfectly separates

the two data classes, and that the learner estimates this threshold with a maximum margin

classifier parameterized by θ̂, which is computed as the bisecting value of the two innermost

data points with disagreeing labels. If data points are selected passively for labeling as in

Figure 1.1a by sampling uniformly at random, then obtaining an absolute deviation |θ̂ − θ|

less than ∆ for some ∆ > 0 requires on the order ofO(∆−1) labeled examples. If the learner

instead adopts an active learning strategy as in Figure 1.1b by intelligently requesting data

points for labeling, it only requires O(log ∆−1) labeled examples to achieve the same degree

of error. This can be achieved by employing a bisection search strategy, where at each

iteration the learner requests labels for examples that bisect the feasible space of threshold

values. However, if the expert adopts a machine teaching strategy as in Figure 1.1c by

utilizing their knowledge of the ideal separator value θ to both select and label examples,

the number of required samples can be drastically reduced. In this case, the expert utilizes

the fact that the learner uses a maximum margin classifier: since the learner will estimate

θ̂ as the bisector between the two innermost examples that differ in label, the expert can

simply label two examples that are bisected by θ. This insight allows the expert to specify θ

with O(1) labeled examples for any arbitrary ∆ > 0, demonstrating the power of putting

the expert in-the-loop to gain sample complexity benefits in machine learning.

The key factors that differentiate between these strategies are to what degree the example

2

selection policy can leverage the history of labeled examples (as in active learning) or the

ground truth threshold known by the expert (as in machine teaching), as well as differences in

the information pathways between the expert and the learner. In passive learning, information

about the ground truth threshold is passed to the learner through data labels rather than

example locations, since the locations are simply selected at random without regard to the

ground truth threshold. In active learning, although the learner leverages the labeling history

to select each example location such that assigned labels are as informative as possible, the

locations themselves do not directly encode information about the ground truth threshold.

By contrast, in machine teaching the example locations themselves directly encode the

ground truth threshold value (assuming that these points have opposite labels). In other

words, the differences in sample complexity between each example selection policy are

related to differences in what type and how much information each labeled example encodes,

along with what information is available to the example selection policy, which serves as an

encoder of the ground truth decision parameters.

Thinking about labeled examples as encoding ground truth parameters is reminiscent of

Shannon’s mathematical theory of communication, which showed the limitations for how

efficiently a telecommunications message could be encoded and communicated with a set

of symbols, and mathematically guaranteed the existence of coding algorithms that could

achieve this optimal performance [15]. These efforts evolved into the fields of information

and coding theory, which not only had the benefit of delineating clear design benchmarks for

telecommunications systems in the seventy years that followed Shannon’s work, but have

also provided a suite of statistical tools that have had profound impacts on fields ranging

from psychology [16] to machine learning [17, 18, 19]. Viewing the IML task of judiciously

selecting training examples to maximize a machine’s learning rate as a coding problem, we

can leverage this same set of tools to measure and maximize example information.

As we introduce in Chapter 2, the key quantity in applying information theory to

example selection is the information gain provided by any particular example, which is

3

the mutual information between an example’s label and the underlying model parameters

being learned1. While information gain (and similarly mutual information) has several

complementary interpretations, roughly speaking it measures the reduction in uncertainty

that labeling an example provides about the ground truth model parameters. While the direct

estimation and subsequent maximization of information gain is already a popular strategy

for active data selection [20], there are several challenges involved in its estimation2. In

particular, it is not always the case that information gain can be evaluated analytically, and

so samples typically need to be drawn from a probability distribution over the possible

model parameters, which are then used in a Monte Carlo estimate of information gain. This

approach adds algorithmic complexity and can be computationally expensive, since the

accuracy of the information gain estimate scales directly with the number of samples drawn,

and generating samples from the parameter distribution may be difficult. Any increase in the

computational cost of estimating information gain per candidate example can be significant,

since typically a large pool of unlabeled examples is considered for labeling and, as we

explore in Chapter 5, for more complex interaction types the number of candidate examples

to consider can scale combinatorially with the pool size. It is particularly important for

data selection compute times to be kept low in applications involving humans-in-the-loop in

order to minimize real-time interaction latency, and is especially important when there is a

direct cost associated with a human expert’s time spent waiting between interactions.

More fundamentally, the brute-force approach of estimating and maximizing information

gain does not fully capitalize on query structures inherent to many IML problems. In this

thesis, we fully identify and model these query structures and show in several cases how

they lead to either direct information maximization solutions that do not require explicit

information gain estimation, or alternate example selection policies that approximate the

1In this work, we take a Bayesian approach and assume the existence of a prior distribution over “optimal”
or “ground truth” model parameters that generate labels according to the same model class as the learner.

2The computational challenges we discuss here are present even when analytical expressions are available
for probability densities, and are distinct from the statistical and computational difficulties involved in
estimating mutual information from empirical samples (see for example [21]).

4

action of information maximization while having a cheaper computational cost along with

other algorithmic advantages. Specifically, by formalizing the notion of labeled examples as

“encoding” the underlying model parameters to be learned, we model interactive learning

from first principles as a noisy communications system with feedback, and utilize theoretical

and algorithmic tools from feedback channel coding and information theory to analyze and

develop example selection policies for efficient IML. We use this model to both deploy

existing feedback coding schemes for the design of example selection policies that maximize

information gain by construction, and motivate computationally efficient approximations

to information maximization. In general, such feedback coding schemes and models

have previously only had limited application to designing example selection policies in

interactive learning, and we anticipate that more formally bridging feedback coding theory

with interactive learning will open up new avenues for efficient example selection and IML

analysis.

We approach our coding-theoretic design of IML interaction policies through a sequence

of investigations:

• How can existing feedback coding algorithms that are simple and human-implementable

be applied to directly select informative interactions in general human-computer inter-

action (HCI) tasks?

• What challenges arise when applying these algorithms specifically to machine learning

tasks, and how can these challenges be addressed in the case studies of interactive

similarity and preference learning by gaining insights from each problem’s query

structure?

• How can we leverage a coding-theoretic modeling and analysis of active machine

learning to modify existing optimal coding strategies for the design of general example

selection policies?

After an introduction to information theory, feedback coding, and interactive learning in

5

Chapter 2, we explore these research thrusts across three parts.

In Chapters 3 and 4, we directly apply feedback coding to design an interaction algorithm

for two HCI problems in brain-computer interfacing and image segmentation. We begin

in Chapter 3 by studying feedback coding for brain-computer interfaces (BCI), which are

systems that consist of hardware to measure a human user’s brain activity, an interaction

algorithm to map the user’s mental commands to control signals, and an end effector that the

user operates via these control signals. BCIs involve either invasive measurements which

allow for high precision control but are generally infeasible, or noninvasive measurements

which offer lower quality signals but are more practical to use. In general, BCI systems have

not been developed that efficiently, robustly, and scalably perform high-complexity control

while retaining the practicality of noninvasive measurements. In this chapter, we leverage a

recently developed feedback coding scheme [22, 23] to fill this gap by modeling BCIs as a

communications system and deploying a human-implementable interaction algorithm for

noninvasive control of a high-complexity robot swarm. We construct a scalable dictionary

of robotic behaviors that can be searched simply and efficiently by a BCI user, as we demon-

strate through a large-scale user study testing the feasibility of our interaction algorithm,

a user test of the full BCI system on (virtual and real) robot swarms, and simulations that

verify our results against theoretical models. Our results provide a proof of concept for

how a large class of high-complexity effectors (even beyond robotics) can be effectively

controlled by a BCI system with low-complexity and noisy inputs.

In Chapter 4, we consider the problem of interactively specifying an object segment

in an image in an efficient and robust manner via binary inputs corrupted by noise. Our

method leverages a similar formulation and feedback coding scheme as in Chapter 3 that

allows a user to interactively select a segment from an ordered lexicon of segments for a

given image. We propose an intuitive lexicon based on ellipses (EllipseLex) and evaluate its

ability to specify desired object segments over increasing numbers of inputs at various levels

of input noise, and compare it to a baseline algorithm. After evaluating the performance

6

of each method on the Microsoft Common Objects in Context (MS-COCO) dataset using

several metrics, we find that our method exhibits competitive performance when specifying

real-world objects in images.

In Chapters 5 and 6, we describe how the algorithms used in Chapters 3 and 4 cannot

generally be directly applied to problems in machine learning, and instead explore how

specific query structures can still motivate approximate information maximization methods

for interactive similarity and preference learning. These chapters explore how many machine

learning tasks such as clustering, classification, recommender systems, and dataset search

benefit from embedding data points in a space where distances reflect notions of relative

similarity as perceived by humans. A common way to construct such an embedding is

to request triplet similarity queries to an oracle, comparing two objects with respect to a

reference. In Chapter 5 we generalize triplet queries to tuple queries of arbitrary size that ask

an oracle to rank multiple objects against a reference, and introduce an efficient and robust

adaptive selection method called InfoTuple that uses a novel approach to information gain

maximization. We show that the performance of InfoTuple at various tuple sizes exceeds

that of the state-of-the-art adaptive triplet selection method on synthetic tests and new human

response datasets, and empirically demonstrate the significant gains in efficiency and query

consistency achieved by querying larger tuples instead of triplets.

Once such an ordinal embedding is constructed, in Chapter 6 we consider the task of

estimating a user’s preference vector w from paired comparisons of the form “does user

w prefer item p or item q?,” where both the user and items are embedded in the same

low-dimensional Euclidean space with distances that reflect user and item similarities.

Such observations arise in numerous settings, including psychometrics and psychology

experiments, search tasks, advertising, and recommender systems. In such tasks, queries can

be extremely costly and subject to varying levels of response noise; thus, we aim to actively

choose pairs that are most informative given the results of previous comparisons. We provide

new theoretical insights into the benefits and challenges of greedy information maximization

7

in this setting, and develop two novel strategies that maximize lower bounds on information

gain and are simpler to analyze and compute respectively. We use simulated responses from

a real-world dataset to validate our strategies through their similar performance to greedy

information maximization, and their superior preference estimation over state-of-the-art

selection methods as well as random queries. We also consider a time-varying extension

of this problem, in which w evolves according to some unknown dynamics model. In this

extension, we consider the task of actively selecting informative paired comparisons between

landmark points to jointly estimate the state trajectory and identify the true dynamics model

from a finite set of candidate models.

In Chapter 7, we propose a new feedback coding scheme specific to IML problems to

address the challenges encountered in Chapters 5 and 6 by proposing a generic approximation

to the feedback coding algorithm utilized in Chapters 3 and 4. We focus specifically on how

the iterative selection of examples for labeling in active machine learning (where the task

of example selection lies with the learner, as opposed to machine teaching) is conceptually

similar to feedback channel coding: in both tasks, the objective is to seek a minimal sequence

of actions to encode information in the presence of noise. While this high-level overlap has

been previously noted, there remain open questions on how to best formulate active learning

as a communications system to leverage existing analysis and algorithms in feedback coding.

In this chapter, we formally identify and leverage the structural commonalities between the

two problems, including the characterization of encoder and noisy channel components,

to design a new algorithm. Specifically, we develop an optimal transport-based feedback

coding scheme called Approximate Posterior Matching (APM) for the task of active example

selection and explore its application to Bayesian logistic regression, a popular model in active

learning. We evaluate APM on a variety of datasets and demonstrate learning performance

comparable to existing active learning methods, at a reduced computational cost. These

results demonstrate the potential of directly deploying concepts from feedback channel

coding to design efficient active learning strategies.

8

We conclude in Chapter 8 with a summary of our findings and discussion of future

directions. This thesis is the product of a series of fruitful and exciting collaborations; at the

start of each chapter, we list in a footnote the contributions of each project collaborator.

9

CHAPTER 2

BACKGROUND

In this chapter, after introducing our mathematical notation we briefly describe core prob-

lems, quantities, and concepts in information theory, coding theory, and interactive learning.

2.1 Mathematical Preliminaries

When introducing scalars, vectors, or matrices, we immediately define their domains (e.g.,

x ∈ Rd or x ∈ R) rather than distinguishing between these quantities with boldface or

other notation. We denote random variables and vectors by uppercase letters (e.g., X) and

observed instantiations of random variables and vectors with lowercase letters (e.g., x). In a

slight abuse of terminology, in general we forgo the distinction between random variables

and vectors, and refer generally to both as “variables,” with dimensionality being clear from

context (e.g., random variable X ∈ Rd). We denote sequences of variables (random or

deterministic) with subscripts and superscripts as Y k
j = {Yi}ki=j = {Yj, Yj+1, . . . Yk−1, Yk}.

When j = 1, we simply write Y k to indicate {Yi}ki=1 = {Y1, Y2, . . . Yk−1, Yk}.

If A is a finite set of discrete elements, then |A| denotes the cardinality of A, i.e., the

number of elements in A. |Σ| is also used to denote the determinant of square matrix Σ,

and we assume that the distinction between cardinality and determinant will be clear from

context. If A is an uncountable set A ⊂ Rd, then Vol denotes the volume of A:

Vol(A) =

∫
Rd
1A(x) dx =

∫
A

dx,

where 1A(x) denotes the indicator function on setA, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0

otherwise. We use log to denote the natural logarithm unless stated otherwise, in which case

the base will always be given explicitly (e.g., log2).

10

The probability of an event E is denoted by P(E). We use the same notation for both

probability mass functions (p.m.f.) of discrete random variables and probability density

functions (p.d.f.) of continuous random variables, and leave the distinction to context. For

two random variables X and Y , we notate their joint density as pX,Y (x, y), their marginal

densities as pX(x) and pY (x), and their conditional densities as pY |X(y | x) and pX|Y (x | y).

If the distribution arguments are clear from context, or if we wish to refer to a distribution as

its own entity, we will sometimes omit the arguments from notation and refer to pX,Y , pX ,

pY , pY |X and pX|Y . Conversely, we sometimes instead omit the subscript, and include only

the arguments, i.e., p(x, y), p(x), p(y), p(y | x), and p(x | y), in which case the relevant

random variables are determined from the arguments. We use similar conventions to denote

the expectation of a random variable, with EX [X] being equivalent to E[X] if the notation

is clear in context. When taking the expected value of a function f(X) over X , we will

sometimes explicitly highlight the variate x ∼ pX in writing expectations, as Ex∼pX [f(x)].

One important class of distributions for continuous random variables are those that

are log-concave, meaning that their probability density functions p(w) satisfy p(αw1 +

(1 − α)w2) ≥ p(w1)αp(w2)1−α for any w1, w2 ∈ Rd and 0 < α < 1. More generally,

any function p that satisfies this property is also referred to as log-concave. The class of

log-concave distributions is broad, and includes many common distributions such as the

normal, exponential, and uniform distributions. Log-concave distributions and functions

have several convenient properties, including that log-concavity of distributions is preserved

under marginalization [24], and log-concavity of functions is preserved under multiplication

[25].

The latter property is particularly useful when studying log-concave distributions in

Bayesian inference: for a hidden random variable θ with prior distribution pθ, and M

independent observations Y M = {Y1, Y2, . . . YM} each distributed according to pYi|θ, we

11

can use Bayes’ rules to write the posterior distribution for θ after observing Y M :

pθ|YM (θ | Y M) =
pθ(θ)

∏M
i=1 p(Yi | θ)

p(Y M)
. (2.1)

Since p(Y M) is simply a normalizing constant that does not depend on θ, we observe from

eq. (2.1) that the posterior density of θ after observing Y M is proportional to a product of

the prior and observation likelihoods. If both the prior and likelihoods are log-concave with

respect to θ, then the product property of log-concave functions implies that pθ|YM is also

log-concave.

2.2 Information Theory, Entropy, and Mutual Information

Information theory is a field of study that has revolutionized statistical technologies over

the past seventy years, having profound impacts on fields from telecommunications to

machine learning. The field was born in the 1940s out of the pursuit for a fundamental

understanding of how information (e.g., messages, data) could be stored and transmitted

efficiently, in either the presence or absence of corrupting noise. While this coding problem

had been contemplated previously, it was the seminal work and ideas of Claude Shannon in

his Mathematical Theory of Communication that formally defined the statistical notion of

information and used the set of resulting tools to both prove fundamental limits on coding

performance and mathematically guarantee the existence of optimal codes to represent and

transmit data in the presence of noise [26, 15]. This work set the foundation for information

and coding theory in the years that followed, providing a set of tools and approaches for

studying the storage and transmission of information as well as delineating clear performance

benchmarks for engineers to strive for when designing new coding systems. Following in

the footsteps of a long line of work applying these tools to signal processing and machine

learning, in this thesis we further expand their application to problems in IML.

12

The first quantity typically studied in information theory1 is the entropy of a discrete

random variable X ∈ X with p.m.f. pX(x), defined as

H(X) = Ex∼pX
[
log2

1

pX(x)

]
=
∑
x∈X

pX(x) log2

1

pX(x)
, (2.2)

where by convention 0 log 0 = 0. Entropy has been widely adopted in information theory,

coding theory, and other fields as a standard measure of uncertainty of a random variable.

Intuitively, the reciprocal of the p.m.f. is a measure of the “surprise” in observing a particular

random variate, with less (resp. more) likely events being more (resp. less) surprising to

observe. The logarithm ensures that “surprise” is additive when observing independent

random variables, which is a convenient mathematical property for such a measure. If

uncertainty is interpreted to mean the expected level of surprise in observing a random

variable, then the definition of entropy in eq. (2.2) follows naturally. We use the base

2 logarithm in entropy and all information-theoretic quantities that follow, such that the

resulting units of uncertainty and information are in bits.

When the distribution of X is conditioned on fixed observations of a discrete random

variable Y ∈ Y , we can evaluate entropy with the conditional p.m.f. pX|Y (X | y) instead:

H(X | Y = y) = Ex∼pX|y

[
log2

1

pX|Y (X | y)

]
=
∑
x∈X

pX|Y (x | y) log2

1

pX|Y (x | y)
,

which we call the fixed conditional entropy2. For shorthand, we will sometimes denote this

as H(X | y), where conditioning on a lowercase variate indicates conditioning on a fixed

observation. Calculating the entropy of X according to the p.m.f. pX|Y represents a measure

of uncertainty of X upon observing a fixed instance of Y . When we average this measure

of uncertainty over the marginal distribution of Y given by pY (y), we have the conditional

entropy of X conditioned on Y , which represents an aggregate measure of uncertainty of X

1The material from this section is largely drawn from [27].
2It would be more standard to call this quantity the discrete entropy ofX conditioned on a fixed observation

of Y , but we adopt this terminology for conciseness.

13

upon observing Y :

H(X | Y) = EY∼pY [H(X | Y = y)] (2.3)

=
∑
y∈Y

pY (y)H(X | Y = y)

=
∑
y∈Y

pY (y)

[∑
x∈X

pX|Y (x | y) log2

1

pX|Y (x | y)

]

=
∑
y∈Y

∑
x∈X

pX,Y (x, y) log2

1

pX|Y (x | y)
,

where pX,Y (x, y) = pY (y)pX|Y (x | y) is the joint p.m.f. of X and Y .

We can also define similar quantities for continuous random variables. If X has a p.d.f.

given by pX(x), the differential entropy of X is defined as

h(X) = Ex∼pX
[
log2

1

pX(x)

]
=

∫
X
pX(x) log2

1

pX(x)
dx.

While differential entropy is not equivalent to discrete entropy in the limit, in some cases it

can still be interpreted as a measure of uncertainty in the sense of measuring the volume of

a distribution’s support. For instance, if X ∈ Rd is uniformly distributed over a set A ⊂ Rd,

and the volume of A is well defined, then differential entropy corresponds directly to this

volume:

h(X) =

∫
A

1

Vol(A)
log2(Vol(A)) dx = log2(Vol(A)).

Similarly, when X ∈ Rd is a multivariate Gaussian distribution with covariance matrix Σ,

then h(X) = 1
2

log2

[
(2πe)d|Σ|]. In this case, differential entropy corresponds geometrically

to the volume of an ellipsoid defined by the eigenvectors of Σ.

In a similar manner to the discrete case, we can define the fixed conditional differential

entropy of continuous random variable X ∈ X when conditioned on continuous random

14

variable Y ∈ Y , where in this case X and Y are continuous sets:

h(X | Y = y) = Ex∼pX|y

[
log2

1

pX|Y (X | y)

]
=

∫
X
pX|Y (x | y) log2

1

pX|Y (x | y)
dx.

We can also define the corresponding conditional differential entropy given by

h(X | Y) = EY [h(X | Y = y)] (2.4)

=

∫
Y
pY (y)

[∫
X
pX|Y (x | y) log2

1

pX|Y (x | y)
dx

]
dy

=

∫
Y

∫
X
pX,Y (x, y) log2

1

pX|Y (x | y)
dx dy.

As in the discrete case, we sometimes write h(X | y) as a shorthand for h(X | Y = y).

More generally, we can define conditional entropies between mixtures of discrete and

continuous random variables by simply altering the domain of the outer expectation in either

eq. (2.3) or eq. (2.4). Specifically, for continuous random variable X and discrete random

variable Y (with p.d.f.’s pX|Y and pX and p.m.f.’s pY |X and pY defined accordingly), we

have

H(Y | X) = Ex∼X [H(Y | x)] h(X | Y) = Ey∼pY [h(X | y)].

With entropy and conditional entropy defined for discrete and continuous random

variables, we now introduce mutual information, which is arguably the central quantity in

information theory. With a slight abuse of integral notation (substituting summations as

needed for discrete random variables), the mutual information between random variables

X ∈ X and Y ∈ Y with joint distribution pX,Y (x, y) and marginal distributions pX(x) and

pY (y) is defined as

I(X;Y) =

∫
Y

∫
X
pX,Y (x, y) log2

pX,Y (x, y)

pX(x)pY (y)
dx dy. (2.5)

While there are many motivations, interpretations, and representations of mutual information,

15

here we focus on a difference of entropies formulation. In particular, in this thesis we are

mainly concerned with the mutual information between one discrete, and one continuous

random variable. It is immediately clear from eq. (2.5) that mutual information is symmetric

with respect to X and Y , and so without loss of generality we assume X is continuous, and

Y is discrete. By expanding terms and using the fact that pX,Y (x, y) = pX(x)pY |X(x | y),

we can rewrite eq. (2.5) as

I(X;Y) = H(Y)−H(Y | X). (2.6)

This form of mutual information leads to a classic interpretation: the first term of eq. (2.6)

measures the uncertainty of random variable Y , and the second term measures the resulting

uncertainty of Y after having observed X . Thus, mutual information corresponds to the

reduction in uncertainty about Y , upon observing X .

Similarly, we can expand eq. (2.5) by instead factoring pX,Y (x, y) = pY (y)pX|Y (x | y),

resulting in

I(X;Y) = h(X)− h(X | Y). (2.7)

While differential entropy on its own cannot be interpreted in the same manner as discrete

entropy, the difference of differential entropies in eq. (2.7) is strongly related to the discrete

case since in the limit it is equivalent to approximating X as a discrete random variable

and measuring the corresponding reduction in discrete entropy. When differential entropy

corresponds to volume (as in the uniform or Gaussian case), eq. (2.7) can also be interpreted

as the expected reduction in the support volume of X , upon observing Y . We explore

this interpretation more formally in the context of active estimation of user preferences in

Chapter 6.

In many problems in coding theory and interactive learning, the joint distribution between

two random variables X and Y is most naturally represented as the product of marginal

pX(x) and conditional distribution pY |X(y | x). For this reason, we also introduce notation

16

to represent mutual information as an explicit function of marginal distribution pX and

conditional distribution pY |X given by I(pX , pY |X) := I(X;Y). Finally, as we explore in

Section 2.3.1 it is sometimes the case that the distributions of X and Y are conditioned on a

third variable Z ∈ Z , and in a similar manner to conditional entropy we can define fixed

conditional mutual information as

I(X;Y | Z = z) =

∫
Y

∫
X
pX,Y |Z(x, y | z) log2

pX,Y |Z(x, y | z)

pX|Z(x | z)pY |Z(y | z)
dx dy,

and conditional mutual information as

I(X;Y | Z) = Ez∼pZ [I(X;Y | Z = z)]

=

∫
Z
pZ(z)

∫
Y

∫
X
pX,Y |Z(x, y | z) log2

pX,Y |Z(x, y | z)

pX|Z(x | z)pY |Z(y | z)
dx dy dz

=

∫
Z

∫
Y

∫
X
pX,Y,Z(x, y, z) log2

pX,Y |Z(x, y | z)

pX|Z(x | z)pY |Z(y | z)
dx dy dz.

We sometimes use I(X;Y | z) to indicate fixed conditional mutual information, where

the lowercase variate z indicates conditioning on a fixed observation. It is easy to show

that I(X;Y | z) = H(X | z) − H(X | Y, z) and similarly I(X;Y | Z) = H(X |

Z)−H(X | Y, Z), where the notation H(X | Y, z) simply indicates a conditional entropy

H(X | Y) where the joint distribution over X, Y is conditioned on observing Z = z, i.e.,

pX,Y |Z(x, y | z). Conditioning on multiple random variables as in H(X | Y, Z) can be

understood by defining Y ′ = (Y, Z) and computing H(X | Y ′) = Ey′∼pY ′ [H(X | y′)] =

Ey,z∼pY,Z [H(X | y, z)].

2.3 Channel Coding Theory

With notions of statistical uncertainty and information defined, we can directly apply

these quantities to the fundamental problem of information theory: efficiently and robustly

encoding a message with a set of symbols. In a typical telecommunications framework, an

17

information source has a message that it wishes to send across some medium, or channel, to

a recipient. To accomplish this, the message must first be translated to an encoding, or a

representation compatible with transmission over the channel. This abstraction is applicable

to almost any scenario where information is transferred from one point to another; when we

as humans converse with a listener, we translate the words in our minds into sound waves

traveling through air, and when we wish to capture an image with a camera and send it

across the internet, the image must be first stored in a binary representation which is then

transmitted via a digital signal. Similarly in IML, when a human expert wishes to teach a

concept to a machine, they must do so by encoding their knowledge through a set of labeled

training examples. Once the message is appropriately encoded, it is then transmitted across

the channel and received by the recipient. Assuming that the recipient understands how

to translate, or decode, the transmitted encoding back into its original format, it can then

understand the message sent by the source.

Often times, the information source wishes to transmit their message by using as compact

of an encoding as possible in order to minimize the complexity of the translation process

from message to encoding and back, as well as to minimize the usage of the transmission

channel, which in many real-world scenarios has an associated cost for each use (e.g.,

memory, energy, bandwidth). However, during the process of transmission it is possible

for the message encoding to be corrupted such that it exits the channel at the receiver in

a corrupted form. We generally refer to this corruption as noise, and call a channel with

corruption a noisy channel. Therefore, the source wishes to use an encoding process that not

only minimizes the complexity and cost of transmission, but also somehow ensures that the

receiver will be able to decode the message, even if it is corrupted along the way.

These two goals of compactness and robustness to noise are often in conflict with one

other, since the primary mechanism to build robustness into a code is to intentionally add

redundancy into the encoding scheme. Intuitively, encoding a message with some degree

of redundancy mitigates the risk of overall message corruption, since by definition the

18

message can be recovered with only a subset of the transmitted code remaining intact. A

classic example of redundant coding that illustrates the tradeoff between compactness and

robustness is repetition coding, where a message is first represented as a sequence of zeros

or ones — or bits, not to be confused with the information unit described previously — and

at transmission time each bit is repeated K times. The receiver then processes each block of

K bits by taking a majority vote and inferring the original bit. Even if some repetition bits

are corrupted during transmission, each original bit will be inferred correctly (and the source

message decoded corrected) as long as a majority of repetition bits are left uncorrupted in

each block. Because the degree of noise protection scales with K, this means that increased

robustness comes at the cost of transmitting a signal that is K times longer than the original

encoding.

To make these concepts more precise, suppose that the source’s goal is to transmit

a message θ belonging to set S by mapping the message to a sequence of n symbols

Ln = {L1, L2, . . . , Ln} each belonging to a symbol alphabet A. In the problem of source

coding, a recipient has direct access to Ln and decodes this symbol set into a decoded

message θ̂n ∈ S, with the hope that θ̂n = θ. In this case, an efficient source coding scheme

will map the message into as few symbols as possibly while simultaneously preserving the

content of the message θ. More realistically, in many settings the symbols Ln are passed

through a channel and corrupted by noise, resulting in a noisy set of corresponding symbols

Y n = {Y1, Y2, . . . , Yn} belonging to alphabet Y . This noisy transmission process is typically

modeled as sampling each Yi from a fixed probability distribution pY |L conditioned on Li; in

communications terms, each Li is a channel input symbol passing through a noisy channel

pY |L, resulting in a corresponding channel output symbol Yi, and the total set of outputs Y n

is then decoded into a potentially erroneous θ̂n. Since the statistics of Yi only depend on the

input statistics of Li, the channel pY |L is considered a memoryless channel. When both A

and Y are discrete sets, pY |L is called a discrete memoryless channel. In this channel coding

scenario, redundancy must be added by the encoder (in the spirit of repetition coding) such

19

Figure 2.1: Channel coding in a communications system.

that the decoder can robustly infer the sent message from the channel outputs, even in the

presence of channel noise (full communications system depicted in Figure 2.1).

An important quantity in this framework is the information gain across the channel,

which is the mutual information I(L;Y) between the channel input and channel output.

Recalling from Section 2.2 the reduction in uncertainty interpretation of mutual informa-

tion, information gain measures the decrease in uncertainty about channel input L upon

receiving Y , i.e.,3 I(L;Y) = H(L) −H(L | Y). In a well-designed coding scheme, this

reduction in uncertainty should be maximized. To see this, note that if L were known to

the decoder before observing Y , then receiving Y does not tell the decoder anything about

the message it didn’t already know. Mathematically, this means that H(L) must be large

for the transmission and receipt of Y to be of any use to the decoder. Even if transmitting

L does in fact have the potential to be informative to the decoder (i.e., large H(L)), the

received output Y is only useful to the decoder if transmission over the channel does not

detrimentally corrupt the input. If this level of corruption is low, then roughly speaking the

channel input is recoverable from the channel output and so the uncertainty about L is low

upon receiving Y , i.e., H(L | Y) is small. Combining these insights, a large information

gain H(L)−H(L | Y) corresponds to informative transmission over the channel.

Since pY |L is fixed for any particular channel, the information gain depends solely on

the probability distribution of channel inputs pL utilized by a particular coding scheme,

which is known as the channel input distribution. A natural question to ask is, what is

the maximum amount of information that can be gained across a given channel, and un-

der what input distribution pL does this maximization occur? The maximum information
3For the sake of exposition we use discrete random variables in this discussion, but the results here

generalize to continuous random variables.

20

gain is called the channel capacity and is denoted by C := maxpL I(pL, pY |L), and the

maximizing distribution is called the capacity-achieving distribution which we denote by

p∗L := arg maxpL I(pL, pY |L). Arguably the most fundamental and important result in chan-

nel coding theory concerns the relationship between channel capacity and the performance

limits of any possible coding scheme. This classic result is Shannon’s Noisy Channel

Coding Theorem, which we summarize below. In our statement of the theorem, we define

a coding scheme as achieving a rate R > 0 if |S| = 2Rn for n transmitted symbols and

P (θ̂n 6= θ)→ 0 as n→∞. Intuitively, the achievable rate of a code measures the number

of possible messages that can be reliably transmitted with only n channel uses, with higher

rates indicating more efficient codes. We say that a coding scheme is capacity-achieving or

optimal if it achieves the channel capacity C.

Theorem 2.3.1 ([15]). For every rate R < C there exists a coding scheme that achieves

R. Conversely, for every rate R > C no such scheme exists. More generally, for coding

schemes with information gain I(L;Y), no rate R > I(L;Y) is achievable.

This theorem laid the groundwork for all of channel coding theory, since it showed

that communication is possible with arbitrarily small error across a noisy channel while

simultaneously defining its efficiency limitations, which sent telecommunications engineers

on a search for capacity-achieving coding schemes while preventing them from attempting

to design any schemes that achieved a rate higher than C. Furthermore, the theorem’s

converse motivates coding schemes that maximize the information gain I(L;Y) in general,

since this quantity upper bounds the achievable rates of a given code.

2.3.1 Coding with Noiseless Feedback

Since the early years of information theory, one particular problem of interest has been

channel coding in the presence of feedback [28, 29, 30]. In this setting, the encoder chooses

symbols iteratively (i.e., one after another in a sequence) and after each channel output

is received, a signal (such as an acknowledgment of receipt) is transmitted back from the

21

receiver to the encoder. This feedback signal then functions as side information during the

next iteration of encoding, and better informs the encoder’s choice of the subsequent channel

input. In the case where all received channel outputs are noiselessly available to the encoder,

the channel is said to have noiseless feedback (depicted in Figure 2.2). Intuitively, noiseless

feedback allows the encoder to fully observe what information is still “missing” at the

decoder so that it can better select its encoded symbols [31]. At any particular iteration n, all

probability distributions at the encoder and decoder are conditioned on observing yn−1, so

that the information gain across the channel becomes I(Ln;Yn | yn−1) = I(pLn|yn−1 , pY |L)

and the posterior distribution of the message (the message being unknown to the decoder) is

pθ|yn−1 .

Figure 2.2: Channel coding with feedback.

Without feedback, capacity-achieving coding schemes typically involve complex forward

error-correcting codes that require elaborate computational mechanisms to implement.

However, in the presence of noiseless feedback the existence of simple capacity-achieving

codes have been shown that involve only basic operations on the transmitted message and

previous channel outputs [29, 30]; we will show in Chapters 3 and 4 how this simplicity leads

to feedback coding schemes that are implementable by humans to convey their intentions in

human-computer interaction. Furthermore, although noiseless feedback does not increase

the channel capacity of discrete memoryless channels [28], it has been shown to increase

the rate of decoding error decay in some cases [30] and can increase capacity for certain

channels with memory [27].

22

2.3.2 Posterior Matching

In recent years, a capacity-achieving coding scheme known as posterior matching (PM) has

been proposed as a general approach to feedback coding [22]. The mechanism behind PM is

a simple, yet powerful idea: at each iteration, an encoder mapping is constructed such that

each channel input is distributed as the capacity-achieving distribution and is statistically

independent of all previous channel outputs. These conditions ensure that the overall

information conveyed about the message over the channel (i.e., I(θ;Y n)) is maximized

at nC, which is the maximum possible reduction in uncertainty about the message after

having received a length-n sequence of channel outputs at the decoder [32]. For message

θ ∈ [0, 1], channel inputs Li ∈ R, and channel outputs yn−1 observable at the encoder, the

PM encoding mapping is given by

gn(·, yn−1) = F−1
L ◦ Fθ|yn−1(· | yn−1) Ln = gn(θ, yn−1), (2.8)

where F−1
L is the inverse c.d.f. of the channel’s capacity-achieving distribution, and Fθ|yn−1

is the c.d.f. of the message posterior pθ|yn−1 . The intuition behind PM relies on properties of

transforming a random variable through c.d.f.’s: transforming θ by Fθ|yn−1(· | yn−1) results

in a uniformly distributed random variable, which when subsequently transformed through

F−1
L is shaped to the capacity-achieving distribution. In essence, at every channel input the

message posterior distribution is “matched” to the capacity-achieving distribution in order

to maximize information transfer across the channel.

One remarkable aspect about PM is that it generalizes several existing feedback coding

schemes [22]; when transmitting over a binary symmetric channel (see next section) PM

simplifies to the one-bit feedback scheme introduced by Horstein [29]. When transmitting

over an additive white Gaussian noise channel, PM distills to the intuitive Schalkwijk-

Kailath scheme, which transmits the error of a minimum mean square error estimate as a

means of refining the decoder state [30]. As we discuss in Chapter 7, PM has also been

23

extended to feedback communication with multidimensional message, channel input, and

channel output spaces [31].

2.3.3 Posterior Matching over a Binary Symmetric Channel

One posterior matching application of particular interest is the case of feedback coding

over a binary symmetric channel (BSC). A BSC with crossover probability 0 ≤ ε ≤ 0.5 is

a binary input (L ∈ {0, 1}) binary output (Y ∈ {0, 1}) channel defined by the following

transition probability (diagrammed in Figure 2.3a):

p(Y = y | L = `) =

1− ε y = `

ε y 6= `

.

It is easy to show in this case that PM (eq. (2.8)) distills to the following scheme (diagrammed

in Figure 2.3b):

Ln =

0 θ < median(pθ|yn−1)

1 θ ≥ median(pθ|yn−1)

. (2.9)

In this simple coding rule, at each coding iteration the encoder indicates to the decoder if

the message is less or greater than the median of the current message posterior distribution,

after which the decoder updates its message posterior. If the posterior median is interpreted

as a “guess” of the message, this strategy is akin to a noisy “twenty questions” style game

between the encoder and decoder, where the encoder uses binary answers to refine the

decoder’s guess [33, 34]. In fact, since only the posterior median is required to implement

this rule (rather than requiring knowledge of the full message posterior pθ|yn−1), it is sufficient

for the decoder to compute the median at the receiver and feed back this guess directly,

rather than relaying the entire history of channel outputs. Another interpretation of PM over

a BSC is related to the idea of binary search; at each iteration, the encoder effectively cuts

the message posterior distribution in half, essentially executing a noise-tolerant version of

24

(a)

(b)

Figure 2.3: (a) Feedback coding over a BSC. (b) In posterior matching over a BSC, the
encoder transmits the result of a comparator between the message and posterior median,
which functions as an Bayesian estimate of the message.

binary search over the unit interval. For this reason, the algorithm is also known as the

probabilistic bisection algorithm [35]. As we will discuss in the next section, the active

bisection strategy in Figure 1.1b is closely related to PM over a BSC.

PM over a BSC has a long history in the coding-theoretic, active hypothesis testing, and

adaptive sampling literature. The probabilistic bisection algorithm was originally proposed

by Horstein, who studied it in the context described here of channel coding over a BSC with

noiseless feedback [29]. Since Horstein’s original work, the algorithm has been analyzed

in depth [36] as well as extended to bisection in general hypothesis spaces [37]. It has

also be specialized to the case of communicating a message from a discrete set of points

rather than from the entire unit interval [38]. Following prior literature [35], we refer to

this discretized version as the Burnashev-Zigangirov (BZ) algorithm. The BZ algorithm

is conceptually similar to the PM rule in eq. (2.9), with slight modifications that take into

account the discrete nature of the message set [38]. As we will describe, the BZ algorithm

plays a critical role in Chapters 3 and 4. Due to the conceptual similarities with PM and

25

the fact that any differences come down to technicalities during bisection and posterior

updating, for simplicity we sometimes refer to BZ interchangeably with PM and make it

clear in implementation details whether the discretized version is being used.

2.4 Interactive Machine Learning

Conceptually, the statistical notions of uncertainty formalized by information and coding

theory weave naturally into the question of learning from data. When a label is assigned

to a data point and provided to a learner that seeks a hypothesis within a structured model

class, the learner gains evidence for certain plausible structures in the data. That is to say,

upon receiving a labeled data point the learner’s uncertainty is reduced about the optimal

model within their learning class. By measuring this reduction in uncertainty — which is a

reduction that should be maximized at every iteration of learning — we can measure the

“value” (or “utility”) that labeling any particular data point provides to the learning process.

If various data points have different amounts of “value” to the learning process, it may

be the case that one can train a learner with a small amount of high-value labeled data

(in terms of reduction in model uncertainty) rather than training on a large dataset labeled

passively, i.e., examples selected for labeling uniformly at random with varying levels of

informativeness. Furthermore, it may also be the case that the value of labeling any particular

data point changes over the course of learning; due to underlying structure between data

points, labeling certain data may eliminate the need to label other data points that provide

redundant information, or may give the learner new information that allows them to identify

points that are likely to be noisy and therefore should not be requested for labeling. The fact

that data points have different utility levels that may change throughout learning suggests

that in order to train a learner efficiently by only labeling a small amount of high utility data,

data should be selected both judiciously (only select informative data points for labeling) and

iteratively (solicit labels for data “on the fly” to adapt to changing levels of informativeness).

We refer to this combination of judicious, iterative selection of training data as interactive

26

selection.

More broadly, we use the term interactive machine learning in this thesis to refer to any

scenario where a machine learns to make decisions (including classification, estimation,

image segmentation, robotic control, or general effector control) by receiving supervised

information (e.g., data labels, control signals) from an expert (or oracle), and where each

training point is selected judiciously and iteratively by either the learner, the expert, or by

some consensus between the two. Although the oracle is typically a human expert who

supervises interactions, it may also consist of more abstract oracles such as the natural world

(which implicitly provides labels when it is measured) or another machine. In this thesis,

we consider two subfields of interactive machine learning, which we introduced briefly in

Figure 1.1: in active learning, the learner has agency over which examples are selected for

labeling, and in machine teaching the oracle has agency over example selection.

In active learning, data points are selected sequentially by a learner for labeling to train

a model with as few labeled examples as possible, with a variety of approaches ranging

from uncertainty sampling to querying by committee [39]. Minimizing the number of

labeled examples is critical in any active learning scenario where labels are expensive to

obtain, such as in healthcare applications where a medical expert must hand-label each

training example [9], or where only a limited number of examples can be evaluated, such

as in drug discovery [10] or adaptive sensing by mobile robots [40]. The study of active

example or measurement selection dates back to the work of Lindley [41] and Chernoff

[42] on the design of experiments for sequential hypothesis testing. These approaches have

been subsequently extended to general Bayesian techniques for maximizing information

in statistical experiments and estimation [20, 43]. Modern active learning methods vary

considerably in their approach to example selection, ranging from coreset construction [44,

45] and adversarial learning of informative examples [46] to ensemble measures of example

utility [47] and Bayesian information acquisition methods [48, 49].

In machine teaching, the oracle is engaged even more directly in the learning process

27

by functioning as a teacher who has an explicit role in selecting examples or interactions

with the learner, rather than serving as a passive labeler who only responds to labeling

requests by the machine [14]. While much of this thesis is specific to the scenario of active

learning, as we discuss in Chapter 8 the extension of this work to the design of interaction

policies in machine teaching is an exciting avenue for future work. In our formulation of

active learning and machine teaching problems, we specifically focus on a Bayesian learning

scenario where the oracle’s knowledge is encapsulated in a set of parameters that during

labeling is fixed and known exactly by the oracle, but a priori is modeled probabilistically

with a prior distribution over a parameter space. Upon observing newly labeled data points,

the learner updates a posterior distribution over this parameter space.

The fundamental idea in this thesis is that interactive learning shares many technical

parallels with channel coding with feedback. The oracle has knowledge of ground truth

parameters (e.g., decision surface parameters) that they wish to teach a machine learning

algorithm, but they cannot communicate these parameters directly and instead must act on

them by providing labels for individual data examples. In the language of coding theory, the

oracle’s knowledge plays the role of the “message” which is encoded to the learner through a

sequence of interactions. Because the expert may be inconsistent in their labeling or the data

features and model class may not be rich enough to model the oracle’s true behavior, this

labeling process is inherently noisy and can be modeled as a noisy communications channel.

Each noisy interaction (e.g., labeled examples with noisy labels) plays the role of a “channel

output” that is observable through feedback to select the next interaction. Both feedback

channel coding and interactive learning seek to minimize the number of encoder actions,

leverage a history of noisy observations to select the next most informative action, must

account for observation noise, and should operate in a computationally efficient manner. By

noting this overlap and capitalizing on the intuition that the value of a data label comes from

the reduction in uncertainty it provides about the oracle’s knowledge, one can translate the

problem of example selection in interactive learning to a problem of channel coding, and

28

Figure 2.4: One-dimensional threshold classification as channel coding with feedback.

subsequently utilize tools from information and coding theory to both select and measure

the informativeness of examples.

While related feedback coding formulations and insights have been proposed in the

literature, in this work we focus on how identifying coding structures in each interactive

problem setting leads to direct application of existing coding strategies (in particular, PM)

or approximations to information maximization that leverage insights from the query struc-

ture. A key component of this process is the identification of the encoder structure in the

equivalent interactive learning communications system. As an example, recall from the

one-dimensional threshold example in Figure 1.1 that the expert interacted with the learner

through a fixed function hθ(x) = 1x≤θ(x). In this example, the assigned label Y was taken

directly as the output of this function, but one might imagine imposing a noise distribution

pY |L on the labels where L = hθ(x). In this case, the noiseless label L functions as an

“encoder output” which is then input into a “channel” given by pY |L that corrupts the true

label with noise, resulting in “channel output” Y . In a Bernoulli noise model where L

is flipped with probability ε, we can model the channel by a BSC as in Figure 2.4. By

comparing this system to Figure 2.3b, the resemblance to PM over a BSC is clear; this

correspondence motivates the selection of the posterior median of pθ|yn−1 — or an example

in a finite pool U that closely approximates this point — as an active learning policy πn to

select the next example Xn for labeling. In fact, this approach is one way to motivate the

bisection strategy used for active example selection in Figure 1.1b.

By identifying similar structures in Chapters 3 and 4, we directly deploy PM over a BSC

29

for intelligent interaction selection in HCI tasks. We then identify other comparison-based

query structures in Chapters 5 and 6 for more general IML tasks, and discuss how PM is

problematic to directly apply for example selection in these settings. Instead, we develop al-

ternate strategies to approximately maximize information gain in a computationally efficient

manner, utilizing these identified query structures. Finally, in Chapter 7 we formalize how

the interaction mechanism of an expert acting upon ground truth parameters with a fixed

function (i.e., encoder) passed through a fixed noise distribution (i.e., noisy channel) is com-

mon for many general active learning problems of interest such as logistic regression. We

present an extension to PM that is compatible with these general active learning scenarios;

specifically, we explore the idea of finding an encoder mapping that finds the closest input

distribution to the capacity-achieving distribution, rather than p∗L itself. We defer a detailed

review of similar approaches in the literature to the related work section of each respective

chapter, so that any related prior work is presented and discussed in context.

30

CHAPTER 3

INTERACTIVE BRAIN-COMPUTER INTERFACING FOR HIGH-COMPLEXITY

EFFECTOR CONTROL

In this chapter and the next, we explore the application of PM to informative interaction

selection in various human-computer interaction (HCI) tasks including brain-computer

interfacing (BCI) for robot swarm control and interactive object segmentation, as a step

towards understanding how coding principles can be applied to IML in general. In both

BCI swarm control and interactive object segmentation we utilize a noisy one-bit input as

a system interaction mechanism, which is common in HCI settings. Mathematically, we

model the human user as having some intended behavior θ which they wish to communicate

to a machine using a sequence of one-bit inputs, each denoted by Li ∈ {0, 1}. Since there

may be errors stemming from either incorrect user decisions or from the input mechanism

itself, we model these interactions as being susceptible to a Bernoulli error with flipping

probability 0 ≤ ε ≤ 0.5, resulting in a noisy bit Yi ∈ {0, 1}. As depicted in Figure 3.1a we

can represent this interaction mechanism as a feedback communications system over a BSC

with crossover probability ε, where the intent θ serves as a message being communicated to

a computer that attempts to recover it from the sequence of noisy binary inputs.

As we will describe in detail, in both of our HCI applications we can model the human

intent (e.g., swarm configuration or image segment) as a real number on the unit interval

θ ∈ [0, 1]. Furthermore, in both applications we introduce the ability for a human operator to

compare any two behaviors in a way that mathematically translates to a comparator function

hθ(x) = 1x≤θ(x). To do so, the set of possible intended behaviors must be constructed in

such a way that a human operator can reliably state if one behavior comes before or after

another behavior according to a total ordering. With this ordering, PM over a BSC can then

be directly applied to design an efficient one-bit interaction mechanism where the computer

31

(a)

(b)

Figure 3.1: (a) One-bit interaction in human-computer interfaces as a coding problem. (b) If
a total order exists for the set of possible human intents, then we can directly apply PM over
a BSC to design a one-bit HCI interaction mechanism.

presents a guessed intent Xn ∈ [0, 1] to the human, who indicates (possibly with errors)

if their intent precedes or succeeds the guess in the behavior ordering. Specifically, the

computer guesses the behavior corresponding to Xn = median(pθ|Y n−1) (Figure 3.1b).

PM and feedback coding models similar to Figure 3.1 have previously been directly

applied for interaction selection in various areas of HCI including brain-computer interfacing

[23], map localization [50], and aircraft path planning [51, 52]. However, as we demonstrate

in this chapter and the next, there are significant differences between these previous efforts

and our use of PM for general effector control. In particular, our approach greatly expands

the complexity of effectors controllable by one-bit HCIs beyond that of previous work by

designing richer sets of intended behaviors along with scalable rules for determining a total

ordering.

32

3.1 Tradeoffs in Brain-Computer Interfacing

A BCI1 is a system that allows a human operator to use only mental commands in controlling

end effectors that interact with the world around them [53]. Such a system consists of a

measurement device to record the human user’s brain activity in the form of electrical signals,

which are then processed into commands that drive a system end effector. This direct link

between brain and effector provides a means for paralyzed users to circumvent muscular

pathways and interact with everyday devices [54] as well as an augmented interface for

healthy users. Although BCIs with invasive neural measurements have had experimental

success in controlling high-complexity effectors (e.g., robotic arms [55, 56, 57, 58]) with

many degrees of freedom, such BCIs are only available in research settings and require

a surgical procedure for electrode implantation. BCIs with noninvasive measurements

(e.g., scalp electrode recordings via an electroencephalogram (EEG)) are more widely

implementable due to their relative ease of use and lower cost, but are limited to controlling

comparatively simpler effectors (e.g., basic wheelchair control [59, 60, 61, 62, 63, 64, 65,

66, 67, 68, 69, 70], cursor control [71, 72, 73, 74, 75, 76]) with few degrees of freedom due

to lower signal-to-noise ratios. There are several tradeoffs involved in the design of BCIs,

including whether measurements are taken invasively or noninvasively, how many mental

commands are needed to drive the effector to a desired behavior, how scalable the system is

to effectors of varying complexity, and how robust the system is to user error and noise in

measurement processing.

In recent years there has been an emerging interest in improving these tradeoffs for

neurotechnology in commercial and clinical applications, with aims to both broaden in-

tended uses and engineer higher quality BCI devices [77, 78, 79, 80]. Despite this increased

interest, there remains a large gap between the complexity of potential end effectors and the

1This chapter is in collaboration with Dr. Yancy Diaz-Mercado, Dr. Magnus Egerstedt, and Dr. Christopher
Rozell. GC developed and tested the signal processing and dictionary search pipeline along with the associ-
ated experiments and analysis. YDM implemented the low-level swarm control algorithms and supervised
experiments on the Robotarium. CR and ME supervised the project. This work has been submitted as a journal
article, where GC is the lead author [1].

33

capabilities of interaction algorithms that map the user’s mental commands from noninvasive

interfaces to control signals. There are several specifications required for a noninvasive

interaction algorithm to meet this need. First and foremost, any such algorithm must be

implementable by humans through mental commands easily learned with training. Fur-

thermore, such interaction algorithms must be scalable so that they remain tractable with

a minimal increase in user overhead when controlling more complex effectors. Similarly,

increases in effector complexity should not result in a need for increased measurement capa-

bilities (e.g., additional EEG features). Because even the most advanced BCI measurements

are susceptible to errors, an interaction algorithm must be robust to such errors. Finally, due

to the wide range of applications that can benefit from BCIs, an ideal interaction algorithm

should be designed for general use and be easily adaptable to a variety of specific tasks.

Currently, interaction algorithms for noninvasive BCIs fall into two broad categories that

only achieve a subset of these specifications. In the first category, the user selects discrete

effector behaviors from a finite set of options displayed on an interface, such as choosing

waypoints for a motorized wheelchair [70] or selecting letters on a virtual keyboard [81, 82,

83, 84]. Although this type of interaction is easy to use, it scales poorly since it becomes

increasingly tedious for a user to select their desired behavior as the number of options (i.e.,

the precision) increases. In the second category, continuous features from measured brain

activity are directly mapped to continuous control over effector action spaces with arbitrary

precision (e.g., robotic arm control [85, 86], quadcopter control [87], cursor control in up

to three-dimensional space [71, 72, 73, 74, 75, 76]). Unlike discrete selection, continuous

control allows a user to navigate an effector’s action space with arbitrary precision in a

scalable method. However, this type of interaction is severely limited in that each additional

effector degree of freedom requires an independent, continuous measurement feature, which

scales poorly and typically limits an effector to a maximum of three degrees of freedom for

EEG-based BCIs.

Our new, robust interaction algorithm reaps the benefits of both discrete selection and

34

continuous control while addressing the disadvantages of each. The key innovation of our

information-theoretic approach is that each new input is used in conjunction with closed-

loop feedback to the user to efficiently refine the entire effector state simultaneously through

a sequence of simple and tractable decisions. We test our approach on human control of

a mobile robot swarm (a large collection of robots, as depicted in Figure 3.2c), where a

human operator issues high-level, global commands which are executed by the swarm in a

distributed fashion (individual robot depicted in Figure 3.2d).

Robot swarm control serves as an ideal testbed for our approach, since robot swarms are

high-complexity cyber-physical systems that can be naturally parameterized beyond three

degrees of freedom and have been previously tested in a BCI setting [88]. Part of what makes

robot swarm control complex is the necessity to coordinate the individual robot motion to

avoid collisions while attempting to achieve their objectives, e.g., reach a target formation.

Robot swarms typically consist of weak robots which possess limited computation, sensing,

and communication capabilities. Thus, in order to achieve the desired behavior, the control

must rely on local sensing information and scale well in complexity with the number of

robots in the swarm. These local rules result in the desired global emergent behavior. When

humans are involved, the swarm formation must be achieved quickly and be cohesive enough

to provide the human operator with clear visual feedback to aid in the decision-making.

Over the last couple of decades, there have been many developments in large classes

of coordination algorithms and abstractions that support the required mapping from low-

complexity, high-level commands to highly complex coordinated swarm behaviors [89].

Recent advances in coverage control [90, 91] provide an excellent approach to perform this

mapping for formation control. The algorithms allow for a human operator to broadcast

reference swarm spatial densities and boundaries in the robot domain that encode desired

formations. The robots in the domain can then coordinate their motion with nearby robots to

robustly achieve the commanded density distributions in real time in a scalable, distributed

manner. In this chapter, we show through an array of human trials and simulations that

35

refining the entire state space is an effective approach for BCI swarm control, thereby

demonstrating the potential and flexibility of our method for controlling high-complexity

end effectors with low-complexity inputs.

3.2 Refining End Effector Behavior

To understand our interaction algorithm at a high-level, first consider the task of finding

a word in an English dictionary. Anecdotally, one would commonly find that the user

repeatedly bisects the remaining pages depending on whether their desired word comes

before or after the current page. Our interaction algorithm is analogous to this efficient

search procedure: the BCI user selects an effector behavior from an ordered dictionary

of candidate behaviors through a sequence of bisections. Specifically, suppose that the

BCI user learns a lexicographical ordering rule for the set of effector behaviors, which

determines a total order of behaviors organized as a dictionary. At each round of interaction,

the effector presents to the user the behavior that bisects the remainder of the dictionary.

The user indicates to the effector (via a binary mental command) if their desired behavior

precedes or succeeds the candidate behavior, and the dictionary scope is narrowed based on

their reply. Rather than strict elimination of half of the dictionary at each step, the algorithm

uses a probabilistic weighting over the dictionary to account for possible noise in the user’s

input (see Section A.3.1). Eventually, the user will have provided enough refinements

for the end effector to correctly converge to the user’s desired behavior. Importantly, this

procedure does not involve the adjustment of individual effector parameters, but instead

only requires the user to decide on the precedence of their desired behavior with respect to

the current one. Although each dictionary bisection affects every effector parameter, the

user only has to make a simple binary decision at each round, regardless of the number of

effector parameters; this is distinct from a brute-force approach where the user adjusts each

parameter individually.

While this interaction algorithm is intuitively satisfying, it is also endowed with rigorous

36

performance guarantees that become apparent when the entire interface is framed as a

feedback communications system: the human user acts as a “transmitter” by encoding

their desired effector behavior (the “message”) through a sequence of binary BCI inputs

(“codes”). These inputs are sequentially decoded by the end effector to refine a new estimate

of the user’s desired behavior, which is fully observable to the user as “noiseless feedback”

and informs the choice of their next input. Because there is some chance that the user’s

binary input will be misclassified or that the user will make a decision error, the sequence of

classification results can be modeled as outputs of a noisy binary symmetric channel (BSC)

with a crossover probability equal to the misclassification probability. When framed as such

a communications system, our interaction algorithm is mathematically equivalent to the

posterior matching coding scheme [22]. Posterior matching is an optimal capacity-achieving

code [27], meaning that this interaction algorithm communicates the user’s desired behavior

to the effector with as few binary inputs as possible for a given error rate.

In previous work, posterior matching has been used as an interaction algorithm in

noninvasive BCIs for tasks such as text entry or vehicle path planning [23, 52, 50, 51]. In

these cases, a dictionary of ordered effector behaviors can be formed by constructing each

dictionary element, or string, as a concatenation of characters from a fixed alphabet. For

example, in text entry and path planning a string is constructed as a concatenation of English

language letters and arc segments, respectively. In either of these cases, the precedence

between two strings can be determined by identifying the first character that differs between

the strings (referred to here as the critical character), and assigning precedence to the string

whose critical character comes earliest in the character alphabet (e.g., ‘a’ precedes ‘z,’ arcs

angled left precede arcs angled right). We refer to such dictionaries as homogeneous since

in each case a single alphabet is used for all character positions in the behavior string. Tasks

such as text entry or path planning can be adequately modeled by homogeneous dictionaries,

since each additional effector parameter (e.g., letter or arc segment) is of the same type.

Unlike the tasks described above, many high-complexity effectors cannot be described

37

with homogeneous dictionaries by concatenating characters from a single alphabet. For

example, in robot swarm control, each swarm configuration is characterized by varied

parameters describing position, shape, and size. To model these high-complexity effectors

we design a heterogeneous dictionary, where a different alphabet is used for each character

position in the behavior string. To our knowledge, posterior matching has not been deployed

as an interaction algorithm using heterogeneous dictionaries, and it was previously unknown

if BCI users can successfully learn and apply a heterogeneous dictionary to posterior

matching control of a high-complexity effector. As we detail below, we demonstrate in a

large-scale interface study that people can learn such a heterogeneous dictionary with little

training and make pairwise string comparisons with high proficiency.

While one might conceive of a variety of heterogeneous dictionaries to describe swarm

configurations, here we adopt a dictionary of regular polygons as a proof of concept. Each

polygon string is parameterized by characters including horizontal position, vertical position,

number of sides, and size, with distinct alphabets for each character position (Figure 3.2b).

To search this polygon dictionary with posterior matching, the BCI user issues hand motor

imagery (MI) inputs detected via EEG measurements to indicate if the desired behavior

comes before or after the currently demonstrated behavior in the dictionary. MI tasks are

a well-studied and popular binary input modality where the user mentally visualizes wrist

flexions of either their left or right hand and the resulting changes in EEG frequencies

are detected by a binary classifier [92, 93]. To refine the swarm, the user determines the

first character where their desired configuration differs from the current configuration and

issues a left-hand (right-hand) MI input if their desired polygon preceded (succeeds) the

current polygon at the critical character. As the complexity of the dictionary increases,

the sequential scan to find the critical character may take marginally more time, but the

decision by the user is ultimately based only on a simple evaluation of that character (despite

each user input potentially updating all characters). Note that this approach is not limited

to EEG-based MI, and is compatible with any binary input mechanism including inputs

38

detected by invasive BCIs. We refer to this combination of a heterogeneous swarm dictionary

with binary input posterior matching as SCINET: Swarm Control via Interactive Neural

Teleoperation (illustrated in Figure 3.2a).

39

(a)

(b)

(c)

(d)

Figure 3.2: Refining effector behavior through configuration sorting. Effector behavior
is determined through iterative refinement from the BCI user. a, In the example of robot
swarm configuration refinement, the BCI user indicates through a mental command (e.g.,
binary motor imagery) if their desired configuration comes before or after the current
configuration in the swarm dictionary (see b). A computer decodes the input by classifying
scalp electrode recordings from the user, and updates a posterior distribution over the
configuration dictionary. The median of the updated distribution is selected as a new
configuration guess and transmitted to the swarm through a global update. Each individual
robot then adjusts its position locally so that the overall configuration conforms to the
new guess in a distributed manner. b, In the swarm configuration dictionary, character
alphabets are defined in order from first to last as follows, with alphabet precedence in
parentheses: horizontal position of the configuration center (centers to the left preceding
centers to the right); vertical position of the configuration center (centers below preceding
centers above); number of sides (fewer sides preceding more sides); configuration size
as the radius from the center to each vertex (smaller radii preceding larger radii). Each
example panel depicts a pair of strings whose critical character corresponds to the panel
column, with blue (solid) configurations preceding red (dashed) configurations in the overall
dictionary ordering. c, Example of a robot swarm coordinating to form a globally specified
configuration by using only local information. d, Close-up view of an individual mobile
robot used in our demonstrations. A robot swarm (as in c) consists of several such robots
collectively performing global actions in a distributed manner.

40

3.3 Dictionary Sorting Proficiency

Although in theory SCINET is capable of controlling an arbitrary number of degrees of

freedom (i.e., string characters), this scalability is limited in practice by the ability and ease

by which the BCI operator can sort strings according to the swarm dictionary ordering. A

typical human user should be able to quickly learn the swarm dictionary and subsequently

sort any pair of strings, with high proficiency when the critical character is located at any

position in the string. To evaluate these user capabilities in an isolated manner from the rest

of the BCI system, we conducted a user study where participants (n = 150) used a point-and-

click interface to select between configurations on a screen (study details in Section A.2).

Each participant was first presented with a set of graphical and text instructions explaining

the polygon dictionary ordering and how to use it to sort a given string pair. Each participant

was then presented with 150 randomly selected shape pairs from the dictionary (Figure 3.3b),

and asked to indicate which shape precedes the other in the dictionary ordering. We provided

each participant with a visual aid to use as a reference during the task (Figure 3.3a); such an

aid could also be presented to a BCI operator in a practical setting.

Overall, participants were able to sort shape pairs with high accuracy. When evaluating

sorting accuracy over all pairs of strings (Figure 3.3c), most subjects sorted with nearly

perfect accuracy (median 99.3% accuracy). Furthermore, response accuracy does not appear

to decrease in the aggregate as the position of the critical character appears later in the

string (median 100% accuracy for all characters, see Figure 3.3d). When evaluating critical

character performance for each individual participant, we also find that most participants

exhibit non-decreasing or only modestly decreasing performance as character depth increases

(Supplementary Figure A.8). Although a user’s capacity for learning and memorizing a

dictionary ordering may create a performance bottleneck, this can be mitigated by providing

users with a mnemonic aid to assist in recalling the ordering, as was done in our study. These

results suggest that users can rapidly learn and apply string sorting in our heterogeneous

41

dictionary, and that adding more characters (i.e., effector parameters) does not hinder a user’s

ability to effectively compare pairs of strings across multiple parameters simultaneously.

(a) (b)

(c) (d)

Figure 3.3: Evaluating configuration sorting proficiency in a user study. a, Mnemonic aid
for dictionary ordering recall using plain language, provided to each user study participant
(n = 150). b, Example shape pair presented to each participant; in this case, the correct
sorting is that the blue (solid) triangle precedes the red (dashed) pentagon, since horizontal
position is the critical character and the triangle’s center is located further to the left. c,
Estimated distribution of overall dictionary sorting accuracy across all participants, where
each participant is represented by a dot. The vast majority of participants were able to
correctly sort configurations with high accuracy, with a mean accuracy (dashed vertical) of
95.8% and a median accuracy (solid vertical) of 99.3%. d, Dictionary sorting accuracy for
each critical character. Each column shows accuracy across all participants (represented as
dots, with added horizontal jitter for visual clarity) when calculated only for queried shape
pairs with the respective critical character. As the depth of the critical character position
increases, sorting ability does not decrease, as exhibited by a median accuracy of 100% for all
characters. These results support the scalability of sorting heterogeneous dictionary strings
as an interaction mechanism, since accuracy does not decrease as additional characters are
added to the dictionary.

42

3.4 Full System Evaluation

Beyond the interaction algorithm, there are a number of additional factors which can affect

SCINET performance in the full system. Namely, the user must not only compare the current

swarm configuration against their target string in the dictionary ordering, but must then

issue a binary input via a mental command and subsequently observe the real-time changes

in the swarm’s behavior. Due to practical effects such as user fatigue, the user’s error

in issuing inputs may stray from the theoretical BSC assumed by the posterior matching

algorithm. Since posterior matching assumes a fixed BSC crossover probability, it is unclear

if non-ideal input statistics will result in poor system performance, and if such effects can

be modeled. To evaluate SCINET in practice, we measure accuracy of a physical SCINET

implementation against a simulation model that accounts for these practical effects.

As a pilot demonstration, GC trained an EEG MI classifier and used the rules of posterior

matching to control a simulated robot swarm (presented visually on a monitor) (Figure 3.4b).

In a series of repeat trials, target configurations were presented and MI commands were

issued to steer the swarm towards the specified configuration (details in Section A.2). As

one might anticipate, over the course of issuing a sequence of MI inputs, the error rate of

user inputs (calculated with respect to the correct input according to the rules of posterior

matching) varied as additional commands were issued (Figure 3.4c). In theory, this error can

be attributed to both the user error of issuing the incorrect posterior matching input, as well

as classification error due to the MI detection algorithm classifying the input incorrectly. We

conclude from the previous dictionary sorting user study that the former error source is small

(estimated at 4.2%, see Figure 3.3c), and therefore the increasing net input errors are likely

due to degrading MI signal feature separation (Supplementary Figure A.12). This effect is

possibly due to user fatigue in issuing a large number of inputs with minimal training, and

resulted in an overall input error of 21.8%. Given previous work on MI inputs, this error

rate is likely to be significantly improved with higher-fidelity interfaces and more extensive

43

user training [94].

Nonetheless, an overall configuration selection accuracy of 75.7% was achieved (Fig-

ure 3.4d), calculated as the fraction of trials where the swarm converged perfectly to the

specified target with zero error; this greatly exceeds the accuracy of 1.67% that would be

obtained by chance selection alone. Furthermore, we can account for these observed results

with a simple model on the non-stationary input statistics. We fit a piecewise polynomial

to the empirical crossover probability (Figure 3.4c, see Section A.2) and use this profile

to generate input errors in a posterior matching simulation that assumes a fixed crossover

probability. This simulation model obtains a similar configuration accuracy (74.3%) to that

observed in practice (Figure 3.4d). Additionally, this model matches the observed behavior

even when evaluating trials based on their required numbers of inputs to converge, which is a

distinguishing element between trials since longer convergence is associated with increasing

input errors and, therefore, with decreased performance.

GC also demonstrated SCINET’s capability to be implemented in a (non-virtual) cyber-

physical system by successfully steering a physical robot swarm in multiple trials as a

proof-of-principle to complement the virtual simulations of swarm behavior (Figure 3.4a).

Taken together, these results collectively demonstrate that SCINET can achieve reasonable

configuration accuracy despite the presence of non-stationary input errors, and that per-

formance can be captured by a simple model. Additionally, the availability of a simulator

that closely matches observed empirical behavior allows us to explore the performance of

SCINET with more general dictionaries.

44

(a)

(b) (c) (d)

Figure 3.4: End-to-end testing of full system with EEG inputs and swarm control.
SCINET was tested as a full system by GC for controlling both physical (a) and virtual (b)
robot swarms. a, When controlling physical robots, the target configuration is presented to
the user as an illuminated shape on the robot arena (accentuated here for visibility). b, During
virtual swarm control, the BCI user views a monitor that presents a target configuration
(depicted as a shape outline) alongside the swarm’s current configuration. The virtual robots
simulate realistic robot motion, and readjust their positions dynamically after each user input.
c, Non-stationary crossover probability versus number of inputs in virtual swarm control
trials (n = 70). At each input, we estimate the empirical crossover probability (blue, dotted
line, with 95% Wilson confidence interval [95]) as the fraction of trials where that input was
decoded incorrectly with respect to the target configuration. A modified cubic function was
fit to this changing crossover probability (orange, solid line) and used to generate errors
in a realistic SCINET simulation (see Section A.2). d, Comparison of experimental and
simulation configuration accuracy as a function of number of inputs until convergence, where
the non-stationary crossover profile from c was used for simulating input errors. Results
are binned into short, medium, and long trials by selecting bin edges at the 1/3 and 2/3
percentiles of virtual swarm convergence times, such that each bin includes approximately
the same number of trials. Configuration accuracy within each bin is computed as the
fraction of trials (n = 10, 000) converging successfully, where error bars depict the 95%
Wilson confidence interval. The overall configuration accuracy across all trials (regardless of
number of inputs to converge) is also depicted. Experimental accuracy (binned and overall)
closely matches that of the simulated model, suggesting that posterior matching (which
assumes a fixed crossover probability) with input errors generated by the profile in c is an
appropriate model for the observed experimental behavior. This suggests that the end-to-end
system is performing as expected (once the input statistics are accounted for), and that it is
reasonable to use this simulator to further explore system behavior.

45

3.5 Generalizing Performance Tradeoffs

Ultimately, the accuracy and number of controllable degrees of freedom (and hence the

dictionary size) in SCINET is determined by the error rate of the input mechanism and

budget on the allowable number of inputs; increasing the controlled degrees of freedom

requires additional inputs to refine effector behavior. To more fully explore this tradeoff,

we use different input error profiles and dictionary sizes (corresponding to a variety of end-

effector degrees of freedom) to simulate posterior matching as well as a baseline interaction

algorithm (called stepwise search) that resembles discrete menu selection in existing BCIs.

In stepwise search, each binary input updates the swarm’s guessed configuration by moving

to the next string in the dictionary, in the direction indicated by the user’s input.2 Note that

the number of steps needed for convergence in stepwise search scales linearly with the size

of the dictionary.

In the data collected from a simple interface (with input characteristics reported in

Figure 3.4c), our proposed interaction mechanism can work well in some scenarios despite

the relatively high overall error rate and the non-stationary error profile that nears chance

probability (50%) as the number of inputs increases. However, large dictionaries providing

more resolution will suffer a performance bottleneck with this non-stationary error profile

because they require more inputs for convergence. While developing high-performance input

mechanisms is not the focus of this work, we evaluate SCINET system performance with

realistic improved input mechanisms by simulating both posterior matching and stepwise

search for a fixed crossover probability of 10% (comparable to input errors seen in prior

work [94]) and a variety of dictionary sizes (expressed as an equivalent number of degrees

of freedom by subdividing each dictionary with an average alphabet size from our physical

system — see Section A.2). The information transfer rate (ITR) [53] (specified in bits

per trial) is shown in Figure 3.5a, demonstrating that SCINET, with this simulated input

2This algorithm is similar to the fixed offset [96] and sequential-select [51] policies explored in previous
work on PM-based BCIs.

46

mechanism, can achieve increasingly high information rates with larger dictionaries. The

fraction of error-free configurations (i.e., perfectly achieving the desired configuration) also

approaches 100% (Figure 3.5b), even with large dictionaries and non-zero error rates in the

user input. Finally, to study the rate of convergence of the estimated configuration to the

target in the dictionary (which is not reflected in the fraction of error-free configurations),

we also measure the absolute deviation of the estimated configuration from the target and

observe that error decays quickly regardless of dictionary size (Figure 3.5c, see Section A.2).

In all metrics, posterior matching vastly outperforms discrete menu selection through

a stepwise search approach. While larger dictionaries require more inputs to refine a

configuration to a desired level of accuracy, posterior matching with a fixed crossover

probability still achieves high performance for large dictionaries in a modest number of

inputs. We note that with a fixed input profile, posterior matching can successfully control

upwards of 6 separate degrees of freedom, which (to our knowledge) exceeds the current

capabilities of noninvasive continuous control BCIs. We also plot the same performance

metrics for simulations where input errors are generated according to the non-stationary

profile observed in our physical experiments (Figures 3.5d to 3.5f). Even with this adverse

input characteristic, posterior matching greatly outperforms stepwise search across all

metrics. Although performance degrades for larger dictionary sizes, these larger dictionary

sizes correspond to estimated degrees of freedom that lie beyond the control capabilities of

typical noninvasive BCIs.

47

ITR Error-free accuracy Absolute deviation

Fi
xe

d
(1

0%
)e

rr
or

(a) (b) (c)

N
on

-s
ta

tio
na

ry
er

ro
rs

(d) (e) (f)

Figure 3.5: Performance as a function of number of inputs and dictionary size. We
simulated the proposed posterior matching approach (solid lines) and stepwise search akin to
discrete menu selection (dotted lines) over various dictionary sizes corresponding to different
(estimated) end effector degrees of freedom (see Section A.2). We evaluate both algorithms
over two input error profiles: a fixed 10% crossover probability similar to prior reported
decoding performance (a-c), and more adverse non-stationary errors generated according a
model of our physical experiments (d-f). a,d, Information transfer rate (ITR) [53], measuring
the amount of information specified by a trial’s inputs with respect to dictionary size. Error
bars are calculated as the ITR of the corresponding accuracy limits in b and e. b,e, Fraction
of estimated configurations that are a perfect match with the target configuration, with 95%
Wilson confidence intervals. c,f Absolute deviation (dictionary distance) between estimated
and target configurations, where error bars depict 95% bootstrap confidence intervals over
10,000 samples (separate resampling for every number of inputs). By all metrics (a-f),
posterior matching greatly outperforms stepwise search, with differences in performance
becoming more drastic for larger dictionary sizes. Additionally, posterior matching obtains
high configuration accuracies at high (> 4) estimated degrees of freedom with a modest
number of inputs.

48

3.6 Discussion

The results in this chapter demonstrate how our interaction algorithm significantly expands

the capabilities of low-complexity BCIs to efficiently, robustly, and scalably control high

complexity effectors, while requiring no more than currently available signal acquisition

hardware already in widespread development and use. The success of human users in

learning and sorting a heterogeneous shape dictionary supports the use of pairwise string

sorting as a simple-to-use and tractable interface design that scales well with the complexity

of the end effector system. When tested in a physical system, SCINET can perform well

despite the presence of non-stationary input errors, validating the deployment of posterior

matching control over a heterogeneous dictionary in a practical setting. By extending our

experimental results to a range of dictionary sizes and input mechanism fidelities through

realistic simulations, we find that posterior matching both outperforms a baseline algorithm

comparable to discrete menu selection and exhibits the ability to control a large number of

estimated degrees of freedom with only a modest number of inputs.

While posterior matching with a heterogeneous dictionary was implemented here for

the control of robot swarms, the general technique is applicable to any setting where each

effector parameter can be assigned its own ordered alphabet. Importantly, our approach

has the flexibility for a system designer to select a dictionary size based on their effector’s

behavioral specifications such as allowable number of user inputs, minimum configuration

accuracy, and number of effector parameters (i.e., degrees of freedom). Once the designer

decides on a fixed number of dictionary elements, they can then distribute this fixed number

of elements among their degrees of freedom in a customized manner by tuning the size

of each character’s alphabet, allowing for variable resolutions between parameters. More

generally, by iteratively refining effector behavior through a sequence of low-complexity

inputs rather than requiring a single high-fidelity measurement to instantaneously extract a

total system state from the BCI user, SCINET complements years of research devoted to

49

improving the input mechanisms of BCIs by instead fundamentally redesigning how inputs

are utilized.

50

CHAPTER 4

INTERACTIVE OBJECT SEGMENTATION WITH NOISY BINARY INPUTS

4.1 Interactive Image Segmentation

In this chapter,1 we take a similar approach as in SCINET to design a one-bit interactive

object segmentation system that is simple, robust, and human-implementable. Interactive

image segmentation is a task where users specify regions of interest in an image by providing

limited, low-complexity inputs with dynamic feedback from the segmentation program.

Such low-complexity inputs are commonplace in many human-computer interfaces since

they can be easier to use than traditional mechanisms and are sometimes necessary due to

user restrictions. For instance, low-complexity inputs are beneficial for users who may wish

to interact with a computer system in a hands-free manner such as in sterilized operating

rooms [97] or to prevent repetitive strain injuries [98]. Furthermore, users suffering from

paralysis or neurological diseases sometimes require alternate means of communication that

provide low-complexity inputs and do not rely on traditional muscular mechanisms [53]. For

example, such input devices might involve brain-computer interfaces [99], input switches

activated by gross motor movements [100], or command entry through non-traditional motor

commands such as the tongue drive [101]. From a mathematical perspective, using such

an HCI for interactive segmentation is a challenging communications problem since such

a system should allow users to indicate segments with high specificity, utilize provided

information in an efficient manner, and remain robust to noise in the input (e.g. interface

noise, user errors, etc.). In typical communications systems, messages can be conveyed via

noisy symbols from low-complexity alphabets with negligible recovery error by employing

1This chapter is in collaboration with Sivabalan Manivasagam, Shaoheng Liang, and Dr. Christopher
Rozell. GC supervised the low-level details of the project including algorithm and experiment design, and
conducted the data analysis. SM and SL assisted in algorithm design and implemented the experiments. CR
supervised the project. GC was the lead author of this work, which appears in [2].

51

complex error correcting codes [27]. However, in the interactive segmentation setting where

the ‘message’ is a segment and the ‘encoder’ is a human, the utilized encoding scheme must

instead be simple and human-implementable.

Approaches to interactive image segmentation systems with these desired traits have

varied in the type of input provided and how it is processed [102, 103, 104, 105, 106, 107,

108, 109, 110]. However, there are few examples of approaches developed for the important

special case of noisy binary inputs that correspond to many alternative or augmented commu-

nication systems. The first segmentation method to use binary inputs is a variant of a twenty

questions style game, which we refer to as “N-Questions” and use as a baseline algorithm

[111]. In this setting, the user is sequentially queried for a binary response indicating

whether a specified pixel is within their desired region, from which the segmentation is

updated and the next question presented. While N-Questions performs well over several

datasets that emphasize selection of arbitrary regions in a given image, it is not as well suited

to the task of specific object segmentation (as opposed to general image segmentation). In

the context of real-world HCI systems, arbitrary segmentations that merge multiple objects

into composite foreground regions may have limited utility compared to specifying discrete

objects for meaningful interaction. Other algorithms using such binary membership queries

for specifying arbitrary segmentations include methods based on transductive inference with

pixel [112] or superpixel [113] queries, and an extension of N-Questions to voxel queries in

three-dimensional space [97].

The main contribution of this chapter is to propose a novel interactive image segmen-

tation algorithm titled EllipseLex that is specifically designed for segmenting real-world

objects using noisy binary inputs using the principles of feedback information theory.

Rather than creating segmentations directly from user inputs (e.g. bounding boxes, fore-

ground/background seeds), our method builds on previous work in brain-computer interfaces

[23, 52] to allow a user to efficiently choose an explicit segment from a large repertoire of

possible segments designed to provide a broad approximation of the object space. This set

52

of possible segments consists of ellipses in various positions, rotations, sizes, and aspect

ratios, since ellipses can serve well as bounding boxes around common objects while si-

multaneously qualifying as inputs into post-processing steps such as the popular GrabCut

segmentation algorithm [106] to refine the segment border as demonstrated in Figure 4.1.

By assigning an order to this set (or lexicon) of ellipses, an algorithm derived from new

results in feedback information theory can be used to specify the desired ellipse in an

optimal manner and makes our method, to the best of our knowledge, the first binary-input

segmentation algorithm to directly model and compensate for input noise. The empirical

results of this work demonstrate improved performance of the proposed lexicon at efficient

object segmentation with simulated users under a variety of experimental conditions.

Original EllipseLex Post-processed

Figure 4.1: EllipseLex with post-processing. source image (left), result of EllipseLex on
bear segment (center), EllipseLex with GrabCut [106] post-processing (right)

4.2 Methods

At its essence, the task of specifying an ellipse (denoted by z∗) in an ordered lexicon

using only noisy binary inputs can be abstracted as a communications system between a

human user and a computer, where the user encodes this ellipse using a sequence of inputs2

Xk ∈ {0, 1}. Each Xk passes through a BSC such that the output symbol Yk ∈ {0, 1}
2In this chapter, X is used to indicate channel inputs rather than L, in order to remain consistent with the

chapter’s original publication [2].

53

experiences a bit flip with some crossover probability p ∈ [0, 0.5). From this output, the

computer guesses, or decodes, an ellipse ẑk, which is then provided to the user as noiseless

visual feedback. With this setup, we can directly apply PM3 as an interaction algorithm,

with guaranteed convergence to the desired ellipse z∗ even in the presence of channel noise

[22]. Intuitively, the algorithm can be described as a guessing game between the user and

computer; at each time step, the computer guesses the median of the posterior distribution

over the segments (conditioned on previous inputs) as the user’s selected ellipse, and the

user then issues a binary input to inform the computer if their desired ellipse (which should

approximate their desired object) comes before or after the guessed ellipse according to the

ordering of the lexicon. From this input (which may be corrupted by noise), the computer

applies a Bayesian update to the segment posterior and presents an updated guess to the user,

thereby repeating the cycle. As the user and computer iterate in this manner, the posterior

distribution converges to a single mass at the user’s desired segment [32].

To apply this coding technique, a finite, ordered lexicon of ellipses must be constructed:

an ellipse word in this lexicon is described by the tuple z = (y, x, θ, a, r) denoting the

ellipse’s vertical position, horizontal position, angle from the horizon, half-length of the

major axis, and aspect ratio of the minor axis to major axis. This lexicon is ordered by

comparing the first letter (i.e. y, x, θ, a, or r) that differs between two ellipse words in

question, in the same manner that words are alphabetized in English. Just as a precedes z

in the English alphabet, each ellipse letter’s alphabet has a precedence rule stated in the

upper section of Figure 4.2. Each alphabet’s order of precedence was selected based on the

authors’ preferences, but any individual alphabet’s ordering could be reversed based on a

user’s preferences, without any changes in the algorithm’s performance. Our algorithm in

its entirety, referred to as “EllipseLex,” is presented in Algorithm 1. At time step k, ellipse

mask ẑk−1 is presented to the user as feedback, which they observe to choose the subsequent

binary input as illustrated by the examples in Figure 4.2.

3Since we are technically searching over a discretized lexicon of ellipses, the BZ algorithm is used here
rather than the probabilistic bisection algorithm.

54

Figure 4.2: Description and examples of ellipse lexicon. The user finds the first letter that
differs between the target (z∗) and guess (ẑ) by moving down the rows of the ‘Alphabet
Precedence’ table, and then issues an input according to Algorithm 1 as demonstrated in
boxes (a) through (e). For instance, in (d) the vertical and horizontal positions as well as
the angle are aligned, but the guess’s major axis is longer than that of the target, so the
target precedes the guess in the lexicon and therefore a 0 should be issued. This type of
refinement continues until a guess is produced that matches the target ellipse.

4.3 Results

We compare the performance of EllipseLex to that of N-Questions using simulated ideal

users with fixed levels of input noise. In particular, we examine the convergence of guessed

segments to ground truth objects with respect to number of inputs, ground truth segment

size, object class, and noise level (i.e. BSC crossover probability). The injected input noise

used here lies within the typical range of crossover probabilities in binary-input HCI systems

[94] and simulates the compounded effect of input mechanism error with human errors

or bias. To quantitatively measure a segmentation method’s ability to specify a ground

truth region we use the popular F1 score, which lies in the interval [0, 1], with low scores

corresponding to poor segmentation performance and high scores indicating exceptional

55

Algorithm 1: EllipseLex
Input: target ellipse mask z∗ = (y∗, x∗, θ∗, a∗, r∗)

ẑ0 ← initial ellipse guess
for k ← 1 to K do

if ŷk−1 6= y∗ then
compare vertical position y

else if x̂k−1 6= x∗ then
compare horizontal position x

else if θ̂k−1 6= θ∗ then
compare angle θ

else if âk−1 6= a∗ then
compare major axis length a

else
compare aspect ratio r

end if
let ρ represent the letter to be compared
if ρ∗ ≥ ρ̂k−1 then
Xk = 1 input 1

else if ρ∗ < ρ̂k−1 then
Xk = 0 input 0

end if
Yk = BSC(Xk, p) BSC with crossover p
ẑk = PM(Yk) update posterior, return median (Section A.1.1)

end for
Output: ẑK

performance [114, 111, 109, 110]. We tested our method on the MS-COCO validation

dataset, which contains over 280,000 segmentations for 80 object classes (e.g. dog, chair,

cup) in both indoor and outdoor settings [115], allowing for a robust testing of each method’s

performance in object segmentation. Figure 4.3 illustrates example segments produced by

EllipseLex in comparison to N-Questions.

To test these algorithms in simulation, ground truth regions from each image serve as

proxies for a human user’s intended objects. In N-Questions, this ground truth is used

directly as an oracle to answer queries regarding pixel inclusion in the object segment.

However, for the sake of simulation EllipseLex operates on a target ellipse mask z∗, which

is selected from the lexicon to approximate a given ground truth segment through the use of

a heuristic as follows: first, the centroid of a given ground truth segment is calculated as

56

Ar = 0.1993 Ar = 0.1654 Ar = 0.0294

Figure 4.3: Comparison of segmentation methods. Row 1: source image [115]. Row
2: ground truth segmentation. Row 3: EllipseLex mask after 30 noiseless inputs. Row 4:
N-Questions mask after 30 noiseless inputs. The relative area (Ar) of each ground truth
segment to its source image is displayed above each image column.

(xc, yc). Then, the vertical and horizontal coordinates of the target ellipse are estimated as

y∗ = arg min
y∈Σy

|y − yc| x∗ = arg min
x∈Σx

|x− xc|, (4.1)

where Σy and Σx denote the vertical and horizontal position alphabets, respectively. After

y∗ and x∗ are selected, θ, a, and r are set by conducting a brute-force search over their

respective alphabets (Σθ,Σa,Σr) and selecting the ellipse that maximizes F1 score with

respect to the given ground truth. More precisely, for ground truth segment s,

(θ∗, a∗, r∗) = arg max
θ∈Σθ,a∈Σa,r∈Σr

F1s(y
∗, x∗, θ, a, r), (4.2)

where F1s(y, x, θ, a, r) calculates the F1 score for an ellipse mask parameterized by (y, x, θ, a, r)

with respect to a ground truth segment s. In practice, a human user steers the guessed ellipse

57

Table 4.1: Mean F1 score vs. number of inputs. At each given input, the F1 score is
calculated for the guessed segment produced by EllipseLex-Low, EllipseLex-High, and
N-Questions, and averaged over all trials respectively for each method. Results are shown
for 0%, 5%, and 10% crossover probabilities in the input. The maximum of each column
at each noise level is displayed in bold, and all standard errors of the mean are less than
0.001.

Method Noise K = 10 K = 20 K = 30

EllipseLex-Low 0% 0.2050 0.5927 0.5949
EllipseLex-High 0% 0.1886 0.4400 0.7487
N-Questions 0% 0.1462 0.2112 0.2569
EllipseLex-Low 5% 0.1720 0.4472 0.5685
EllipseLex-High 5% 0.1353 0.2482 0.5518
N-Questions 5% 0.1269 0.1747 0.2064
EllipseLex-Low 10% 0.1379 0.3021 0.4616
EllipseLex-High 10% 0.0970 0.1766 0.3344
N-Questions 10% 0.1145 0.1476 0.1686

to fit their desired segment instead of performing intermediate estimation of a target ellipse.

We tested two lexicons corresponding to finer or coarser alphabet sizes (my, mx, mθ, ma,

mr) of (15, 20, 10, 20, 10) and (100, 100, 20, 20, 10), referred to as “EllipseLex-Low” and

“EllipseLex-High” respectively.

In Table 4.1, mean F1 score from all ground truth regions in MS-COCO is depicted at

select numbers of inputs for all methods across all noise levels. Overall, the EllipseLex

methods outperform N-Questions for increasing numbers of inputs over all noise levels. A

tradeoff between low and high resolution lexicons is evident, with EllipseLex-Low exhibiting

faster F1 growth and higher noise resilience in comparison to EllipseLex-High over all

noise levels. This is due to the fact that larger lexicon resolutions require more inputs for

convergence under noise according to the PM algorithm. However, in the noiseless case

EllipseLex-High achieves a significantly higher final F1 score, suggesting that the choice of

lexicon parameterization should be determined with respect to the number of desired inputs

as well as the noise level.

Next, the F1 score achieved after 30 inputs is compared across methods and noise

58

Figure 4.4: Final F1 score vs. relative segment area. Average achieved F1 score after 30
inputs is plotted against relative segment area for all three methods (left axis) along with the
empirical cumulative distribution function of relative segment areas (right axis). Relative
segment area is calculated as the area of a ground truth segment divided by the area of its
source image. Averages here are taken over trials of segments in the same relative segment
area bin, with bin sizes of 0.01. Only relative segment areas below the 95th percentile are
displayed. Error bars consisting of ±1 standard error are displayed.

levels with respect to the relative area of each ground truth segment (segment area / image

area). As depicted in Figure 4.4, the EllipseLex methods outperform N-Questions for

segments with relative areas of 0.1 and less, a set which comprises approximately 90% of

the segments in MS-COCO. While N-Questions demonstrates superior performance for

segments with relative area more than approximately 0.15, these segment sizes are rare for

real-world objects in the MS-COCO database and the EllipseLex methods do not degrade in

performance with increases in area. These trends are evident across all noise levels.

Finally, when final F1 score is plotted against the 80 object classes in MS-COCO in

Figure 4.5, the EllipseLex methods appear to achieve improved performance. While all

three methods achieve comparable performance for some classes (e.g. “bed”), the EllipseLex

methods significantly outperform N-Questions even in the worst performing object classes

(e.g. “skis”). This supports the notion that EllipseLex methods are well suited to object

selection across multiple everyday object classes. Note that EllipseLex-High achieves higher

F1 scores than EllipseLex-Low uniformly across all classes.

59

be
d

re
fr

ig
er

at
or ca

t
be

ar
co

uc
h

tr
ai

n
to

il
et

ov
en

di
ni

ng
 ta

bl
e

tv
pi

zz
a

bu
s

sa
nd

w
ic

h do
g

la
pt

op
el

ep
ha

nt

te
dd

y
be

ar
m

ic
ro

w
av

e
ze

br
a

fi
re

 h
yd

ra
nt

gi
ra

ff
e

st
op

 s
ig

n
ca

ke
ke

yb
oa

rd
su

it
ca

se
ho

rs
e

ho
t d

og
tr

uc
k

si
nk

ai
rp

la
ne

m
ot

or
cy

cl
e

bo
w

l
br

oc
co

li
do

nu
t

pa
rk

in
g

m
et

er
ha

ir
 d

ri
er

or
an

ge
be

nc
h

va
se

pe
rs

on
um

br
el

la

po
tt
ed

 p
la

nt cl
oc

k
co

w
ba

na
na

sc
is

so
rs

ap
pl

e
ch

ai
r

to
as

te
r

cu
p

sh
ee

p
su

rf
bo

ar
d

bo
at

bi
cy

cl
e

ce
ll
 p

ho
ne

fr
is

be
e

ba
ck

pa
ck

ti
e

te
nn

is
 r
ac

ke
t

ca
rr

ot
m

ou
se

sn
ow

bo
ar

d
w

in
e

gl
as

s ca
r

bi
rd

ha
nd

ba
g

sk
at

eb
oa

rd
re

m
ot

e
bo

tt
le

to
ot

hb
ru

sh bo
ok fo
rk

kn
if

e
ki

te
sp

oo
n

tr
af

fi
c

li
gh

t

ba
se

ba
ll
 g

lo
ve

ba
se

ba
ll
 b

at
sp

or
ts

 b
al

l
sk

is

Image Class

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ch

ie
v

ed
 F

1
 S

co
re

EllipseLex-Low

EllipseLex-High

N-Questions

Figure 4.5: Final F1 score vs. object class. Average final F1 score after 30 inputs is plotted
against ground truth object class sorted in descending order of N-Questions performance,
for the noiseless case only. Averages here are taken over trials with ground truth segments
in the same object class. Error bars consisting of ±1 standard error are displayed.

4.4 Discussion

The results in this work demonstrate the potential for finite, ordered lexicons of ellipse

masks for specifying object segments using only noisy binary inputs according to the PM

algorithm. Our method performs well in noise levels that fall in the typical range of crossover

probabilities in binary-input HCI systems, indicating an ability to rapidly and precisely

specify object segments in a manner resilient to input errors. This is plausibly due to the

explicit noise modeling in posterior matching as well as optimal convergence guarantees

provided by feedback information theory. The promising performance of EllipseLex overall

as well as by class and segment size on a large dataset that includes many classes of

real-world objects in natural contexts suggests that our method is conducive to real-world

interactive object segmentation in images. Furthermore, EllipseLex has the advantage that

after an ellipse mask is produced it can be input into any post-processing stage that accepts

a bounding box to produce segmentations by utilizing inherent structure in natural images.

Because this work is the first attempt to create a lexicon of segments that is robustly

navigated with noisy binary inputs in an information-efficient manner, this work is intended

60

to test its performance in simulation to verify its “best case” properties, as is standard in

previous literature studying segmentation with binary inputs [111, 112, 113, 97]. Since

EllipseLex performs competitively against a baseline method on this task in realistic object

segmentation scenarios, a follow-up study involving human subjects is merited to test human

ability in ordering guessed ellipses with respect to target segments, evaluate possible user

biases, and assess overall human operation of EllipseLex.

61

CHAPTER 5

ACTIVE ORDINAL QUERYING FOR TUPLEWISE SIMILARITY LEARNING

In Chapters 3 and 4, the problem of one-bit interaction design for HCIs fit conveniently into

the framework of feedback communication over a BSC via posterior matching, since both

the interactive BCI and image segmentation tasks are endowed with structures amenable to

lexicographical sorting by a human. However, general problems in IML do not typically

contain the appropriate query structures that allow for direct application of PM. In particular,

it is relatively uncommon for IML problems to be adequately modeled as encoding a scalar

parameter on the unit interval with a comparator function; in Chapter 7 we address this

challenge explicitly in the case of general active learning problems. Instead, in this chapter

and the next we show in the case of similarity and preference learning how there may still

exist convenient IML query structures that allow for simplifying approximations to be made

for the design of computationally efficient query selection strategies that approximate the

action of information gain maximization.

5.1 Relative Similarity Learning

Similarity learning1 is the process of assigning point coordinates to objects in a dataset such

that distances between objects in the learned space are consistent with notions of similarity

as perceived by humans (see for example Figure 5.1). While these objects usually exist in

some high-dimensional space (e.g., images, audio), very often the semantic information

humans attribute to these objects lies in a low-dimensional space (e.g., items, words). Once

this low-dimensional embedding is learned, existing intelligent algorithms [116, 4] can

be used to search the dataset with query complexity scaling in the embedding dimension,

1This chapter is in collaboration with Stefano Fenu and Dr. Christopher Rozell. GC and SF contributed
equally on most project components, and coauthored the corresponding publication in [3]. CR supervised the
project.

62

Figure 5.1: Low-dimensional similarity embedding of images.2

allowing large datasets to be searched quickly in applications such as task selection for robot

learning from demonstration [117], object recognition [118], or image retrieval [119].

To construct such an embedding for a given set of objects, queries that capture the

similarity statistics between the objects in question must be made to human experts. While

there exist several types of similarity queries that can be made (e.g., relative attributes

between objects [120]), we focus on relative similarity queries posed to an oracle comparing

objects with respect to a “head” (i.e., reference) object. Relative similarity queries are useful

because they gather object similarity information using only object identifiers rather than

predetermined features or attributes, allowing similarity learning methods to be applied

to any collection of uniquely identifiable objects. In contrast, if a head object were not

specified, an oracle would need to use a feature-based criterion for ranking the object set,

which is not viable in many applications of interest (e.g., learning human preferences).

Such relative similarity queries typically come in the form of triplet comparisons (i.e.,

“is object a more similar to object b or c?”) [121, 122, 123]. In our first main contribution,

we extend these queries to larger rank orderings of tuples of k objects to gather more

information at once for similarity learning. This query type takes the form “rank objects b1

through bk−1 according to their similarity to object a.” To the best of our knowledge, this

2Image provided by courtesy of Stefano Fenu.

63

(a) (b)

Figure 5.2: In (a), it is ambiguous which item should be chosen as more similar to the head
object, since both comparison items are similar in distinct ways. In (b), adding one more
comparison item can add context to disambiguate this choice.

study is the first attempt to leverage this generalized query type in similarity learning. The

use of this query type is motivated by the fact that comparing multiple objects simultaneously

provides increased context for a human expert [124], which can increase labeling consistency

without a significant increase in human effort per query [125] and has demonstrated benefits

in settings such as rank learning [126]. In technical terms, tuplewise queries capture joint

dependence between objects that isn’t captured in triplet comparisons (which are often

incorrectly modeled as independent queries). To illustrate this point, consider the difference

between the triplet query and tuple query presented in Figure 5.2. In the triplet query,

multiple attributes could be used to rank a given query, increasing the ambiguity about

which item should be chosen as more similar to the reference. Adding an item to the

tuple can provide additional context about the entire dataset to the oracle, clarifying which

criterion should be used to rank the tuple and thereby making the query less ambiguous.

While tuple queries are appealing, their use presents two major challenges. First, in a

dataset ofN objects queried with tuples of size k there areN
(
N−1
k−1

)
possible tuples. Labeling

these individual tuples is prohibitively time consuming for large datasets. Even if uniformly

random query selection is used to downsample this set, there is evidence that such a strategy

is still punitively expensive [127]. Requesting an exhaustive number of queries is also

64

inefficient from an information standpoint, since there is redundancy in the set of all tuple

rankings. Second, in many settings of interest, the oracle answering such queries may be

stochastic. For example, crowd oracles may aggregate responses from experts with differing

similarity judgments [121], and individual oracles can be unreliable over time (especially

for queries regarding similar objects).

These issues can be ameliorated in part by leveraging tools from active learning, the goal

of which is to minimize the total labeling cost including the number of expert interactions

(usually corresponding to monetary cost), aggregate response time, and computational

cost needed to dynamically select queries. This is achieved through adaptive approaches

that increase learning efficiency by using previous query responses to determine which

information about a model is still “missing” as well as model the oracle’s stochasticity.

In this framework, unlabeled data points that optimize a measure of informativeness are

selected for expert labeling. One such metric, mutual information, is a popular way to

assess the reduction in uncertainty a query provides about unknown learning parameters

[39, 41, 20]. In active similarity learning, the state-of-the-art is a strategy called “Crowd

Kernel Learning” (CKL) that selects triplets that maximize the mutual information between

a query response and the embedding coordinates of the head object [121]. However, CKL

does not apply to ordinal queries of general tuples sizes (k > 3), and its formulation of

mutual information only measures the information a query provides about the embedding

coordinates of the head object, disregarding information about the locations of the other

objects in the query.

In our second main contribution, we address these deficiencies and the lack of an active

similarity learning strategy for our new query type by introducing a novel method for

efficient and robust adaptive selection of tuplewise queries of arbitrary size. Our method,

called InfoTuple, maximizes the mutual information a query response provides about the

entire embedding, which is a direct measure of query informativeness that leverages the

high degree of coupling between all of the objects in a query. InfoTuple relies on a novel

65

set of simplifying yet reasonable assumptions for tractable mutual information estimation

from a single batch of Monte Carlo samples. Our approach accounts for all objects in a

query, while avoiding the need to decompose mutual information into a prohibitive number

of terms. We demonstrate the performance of this method across datasets, oracle models,

and tuple sizes, using both synthetic tests and newly collected large-scale human response

datasets. In particular, we empirically show that InfoTuple’s performance exceeds that of

CKL and random queries, and furthermore that it benefits significantly from using larger

tuples even after normalizing for tuple size. We also demonstrate the utility of our novel

query type by showing an increase in query consistency for larger tuples over triplets, and

show that these advantages can be gained without excessive labeling-time increases.

5.2 Related Work

Similarity learning from triplets is increasingly commonplace in modern AI, and popular

deep learning architectures have been developed to leverage triplet labels [123]. Frameworks

such as that of [128] or t-STE [122] are relatively ubiquitous in the visualization community,

and attempt to directly capture a notion of visual similarity close to that observed in

psychometrics literature (e.g., [129]). However, for large datasets it is often punitively

expensive to collect such exhaustive relationship data from labelers, so the development

of approximate methods of learning such embeddings is a matter of interest to the AI

community.

The bulk of the existing literature on active selection of ordinal queries for constructing

these embeddings focuses on the case where distance relationships between objects can be

determined with absolute certainty. This deterministic case is well studied, and lower bounds

exist on the sample complexity needed to learn high-quality embeddings [127]. In reality,

responses are often not deterministic for a number of practical reasons and probabilistic

MDS methods have been proposed to model such cases [121]. Analytic results do exist

characterizing bounds on prediction error in this setting [130], but determining optimal

66

strategies for query selection in the stochastic setting remains largely an open problem.

Specifically, to the best of our knowledge there have been no previous attempts to

adaptively select relative comparisons with respect to a head object for general tuple sizes

(k ≥ 3) in the context of similarity learning. Prior work [125, 131] develops an active

strategy for sampling tuples, but the query task is relative attribute ranking within the tuple

according to some pre-specified attribute as opposed to comparison against a head object.

Other work [132] actively samples the same query type as our study, but in the context of

classification via label propagation. Research exists that is similar to our learning scenario

since they actively sample tuples for relative similarity comparisons to a head for the sake

of learning and searching an embedding of objects [133], but these comparisons are ternary

‘similar’, ‘dissimilar’, or ‘neither’ labels and their methodology differs from the mutual

information approach presented here. Similarly, other work [134] actively samples tuplewise

queries with binary ‘similar’ or ‘dissimilar’ label responses with respect to a head, but in

the context of classification. Finally, the prior work [135] also employs such tuplewise

binary queries for similarity learning, but with randomly selected queries. While no previous

study addresses the similarity learning problem that we explore here, the existing literature

demonstrates the effectiveness, efficiency, and feasibility of queries involving multiple

objects and provides support for the practical use of our proposed query type.

5.3 Methods

The problem of adaptively selecting a tuplewise query can be formulated as follows: for

a dataset X of N objects, assume that there exists a d-dimensional vector of embedding

coordinates for each object which are concatenated as columns in matrix M ∈ Rd×N . The

similarity matrix corresponding to M is given by K = MTM , which implies an N × N

matrix D of distances between the objects in X . Specifically, the squared distance between

the ith and jth objects in the dataset is given by D2
i,j = Ki,i− 2Ki,j +Kj,j . These distances

are assumed to be consistent in expectation with similarity comparisons from an oracle

67

(e.g., human expert or crowd) such that similar objects are closer and dissimilar objects are

farther apart. Since relative similarity comparisons between tuples of objects inform their

relative embedding distances rather than their absolute coordinates, our objective is to learn

similarity matrix K rather than M , which can be recovered from K up to a change in basis

[121].

A tuplewise oracle query at time step n is composed of a “body” of objects Bn =

{bn1 , bn2 , . . . bnk−1} which the oracle ranks by similarity with respect to some “head” object

an. Letting Qn = {an} ∪ Bn denote the nth posed tuple, we denote the oracle’s ranking

response as R(Qn) = {R1(Qn), R2(Qn), . . . Rk−1(Qn)} which is a permutation of Bn such

that R1(Qn) ≺ R2(Qn) · · · ≺ Rk−1(Qn) where bi ≺ bj indicates that the oracle ranks object

bi as more similar to an than object bj . Since the oracle is assumed to be stochastic, R(Qn)

is a random permutation of Bn governed by a distribution that is assumed to depend on

K. This assumed dependence is natural because oracle consistency is likely coupled with

notions of object similarity, and therefore with distances between the objects in M . The

actual recorded oracle ranking is a random variate of R(Qn) denoted as r(Qn). Letting

rn = {r(Q1), r(Q2), . . . r(Qn)}, define K̂n as an estimate of K learned from previous

rankings rn, with corresponding distance matrix D̂n.

Suppose that tuples Q1, Q2, . . . Qn−1 have been posed as queries to the oracle with

corresponding ranking responses rn−1, and consider a Bayes optimal approach where

after the nth query we estimate the similarity matrix as the maximum a posteriori (MAP)

estimator over a similarity matrix posterior distribution given by f(K|rn), i.e. K̂n =

arg maxK f(K|rn) . To choose the query Qn, a reasonable objective is to select a query

that maximizes the achieved posterior value of the resulting MAP estimator (or equivalently

one that maximizes the achieved logarithm of the posterior), corresponding to a higher level

of confidence in the estimate. However, because the oracle response r(Qn) is unknown

before a query is issued, the resulting maximized posterior value is unknown. Instead, a

more reasonable objective is to select a query that maximizes the expected value over the

68

posterior of R(Qn). This can be stated as

arg max
Qn

ER(Qn)

[
max
K

log f(K|R(Qn), rn−1) | rn−1
]
.

In practice, this optimization is infeasible since each expectation involves the calculation of

several MAP estimates. Noting that maximization is lower bounded by expectation, this

optimization can be relaxed by replacing the maximization over K with an expectation over

its posterior distribution given R(Qn) and rn−1, resulting in a feasible maximization of a

lower bound given by

arg max
Qn

−h(K | R(Qn), rn−1), (5.1)

where h(K | R(Qn), rn−1) denotes conditional differential entropy. Let the mutual informa-

tion between K and R(Qn) given rn−1 be defined by

I(K;R(Qn) | rn−1) = h(K | rn−1)− h(K |R(Qn), rn−1),

and note that the second term is equal to eq. (5.1) while the first term does not depend on the

choice ofQn. Thus, maximizing eq. (5.1) overQn is equivalent to maximizing I(K,R(Qn) |

rn−1). Hence, we can adaptively select tuples that maximize mutual information as a means

of greedily maximizing a lower bound on the log-posterior achieved by a MAP estimator,

corresponding to a high estimator confidence.

However, calculating eq. (5.1) for a candidate tuple is an expensive procedure that

involves estimating the differential entropy of a combinatorially large number of posterior

distributions, since the expectation with respect to R(Qn) is taken over (k − 1)! possible

rankings. Instead, in the spirit of [136] we leverage the symmetry of mutual information to

write the equivalent objective

arg max
Qn

H(R(Qn) | rn−1)−H(R(Qn) | K, rn−1), (5.2)

69

where H(· | ·) denotes conditional entropy of a discrete random variable. Estimating

eq. (5.2) for a candidate tuple only involves averaging ranking entropy over a single posterior

f(K | rn−1), regardless of the value of k. This insight, along with suitable probability

models discussed in the next sections, allows us to efficiently estimate mutual information

for a candidate tuple over a single batch of Monte Carlo samples, rather than having to

sample from (k − 1)! posteriors.

Furthermore, by interpreting entropy of discrete random variables as a measure of

uncertainty, this form of mutual information maximization has a satisfying qualitative

interpretation. The first entropy term in eq. (5.2) prefers tuples whose rankings are uncertain,

preventing queries from being wasted on predictable or redundant responses. Meanwhile, the

second term discourages tuples that have high expected uncertainty when conditioned on K;

this prevents the selection of tuples that, even if K were somehow revealed, would still have

uncertain rankings. Such queries are inherently ambiguous, and therefore uninformative to

the embedding. Thus, maximizing mutual information optimizes the balance between these

two measures of uncertainty and therefore prefers queries that are unknown to the learner

but that can still be answered consistently by the oracle.

5.3.1 Estimating Mutual Information

To tractably estimate the entropy terms in eq. (5.2) for a candidate tuple, we employ

several simplifying assumptions concerning the joint statistics of the query sequence and

the embedding that allow for efficient Monte Carlo sampling:

(A1) As is common in active learning settings, we assume that each query response R(Qn)

is statistically independent of previous responses rn−1, when conditioned on K.

(A2) The distribution of R(Qn) conditioned on K is only dependent on the distances

between an and the objects in Bn, notated as set DQn := {Dan,b : b ∈ B}. This direct

dependence of tuple ranking probabilities on inter-object distances is rooted in the

fact that the distance relationships in the embedding are assumed to capture oracle

70

response behavior, and is a common assumption in ordinal embedding literature [122,

121]. Furthermore, this conditional independence of R(Qn) from objects x 6∈ Qn is

prevalent in probabilistic ranking literature [137]. In the next section, we describe a

reasonable ranking probability model that satisfies this assumption.

(A3) D is conditionally independent of rn−1, given D̂n−1. This assumption is reasonable

because embedding methods used to estimate K̂n−1 (and subsequently D̂n−1) are

designed such that distances in the estimated embedding preserve the response history

contained in rn−1. In practice, it is more convenient to model an embedding posterior

distribution by conditioning on D̂n−1, learned from the previous responses rn−1, rather

than by conditioning on rn−1 itself. This is in the same spirit of CKL, where the

current embedding estimate is used to approximate a posterior distribution over points.

(A4) Conditioned on D̂n−1, the posterior distribution of DQn is normally distributed about

the corresponding values in D̂n−1
Qn

, i.e. Dn−1
an,b
∼ N (D̂n−1

an,b
, σ2

n−1) ∀b ∈ B, where σ2
n−1

is a variance parameter. Imposing Gaussian distributions on inter-object distances is

a recent approach to modeling uncertainty in ordinal embeddings [138] that allows

us to approximate the distance posterior with a fixed batch of samples from a simple

distribution. Furthermore, the combination of this model with item (A2) means that

we only need to sample from the normal distributions corresponding to the objects

in Qn. We choose σ2
n−1 to be the sample variance of all entries in D̂n−1, which is a

heuristic that introduces a source of variation that preserves the scale of the embedding.

Combining these assumptions, with a slight abuse of notation by writing H(X) = H(p(X))

for a random variableX with probability mass function p(X), andN n−1
Qn

to represent normal

71

distribution N (D̂n−1
Qn

, σ2
n−1), we have

H(R(Qn) | rn−1) = H
(
EK
[
p(R(Qn) |K, rn−1) | rn−1

])
= H

(
EK
[
p(R(Qn) | K) | rn−1

])
(A1)

= H
(
EDQn

[
p(R(Qn) | DQn) | rn−1

])
(A2)

= H
(
EDQn

[
p(R(Qn) | DQn) | D̂n−1

])
(A3)

= H
(
EDQn∼Nn−1

Qn
[p(R(Qn) | DQn)]

)
. (A4)

Similarly, we have

H(R(Qn) |K, rn−1) = EDQn∼Nn−1
Qn

[H (p(R(Qn) |DQn))] .

This formulation allows a fixed-sized batch of samples to be drawn and evaluated over, the

size of which can be tuned based on real-time performance specifications. This enables us

to separate our computational budget and mutual information estimation accuracy from the

size of the tuple query.

5.3.2 Embedding Technique

In order to maximize the flexibility of our approach and draw a closer one-to-one comparison

to existing methods for similarity learning, we train our embedding on our actively selected

tuples by first decomposing a tuple ranking into k − 2 constituent triplets defined by the set

{Ri(Qm) ≺ Ri+1(Qm) : 1 ≤ i ≤ k − 2, m ≤ n}, and then learning an embedding from

these triplets with any triplet ordinal embedding algorithm of choice. Since we compare

performance against CKL in our experiments, our proposed embedding technique follows

directly from the probabilistic MDS formulation in [121] so as to evaluate the effectiveness

of our novel query selection strategy in a controlled setting. We wish to constrain our learned

similarity matrix to the set of symmetric unit-length PSD matrices, so we consider the set

72

S of such matrices: S = {K � 0|K11 = K22 = · · · = KNN = 1}. We denote the closest

matrix in S to K as PS(K) = arg minA∈S
∑

ij(Kij − Aij)
2. Projecting to the element

in S closest to K is a quadratic program, which we solve by gradient projection descent

on K. We do this by selecting an initial K0 arbitrarily, and for each iteration computing

Kt+1 = PS(Kt− η∇lt(Kt)) with lt being the empirical log-loss at iteration t i.e. lt = log 1
p
,

and p being the probability that the oracle correctly ordered the constituent triplets of the

selected tuples. For the response probability of an individual triplet, we adopt the model

in [121] that is reminiscent of Bradley-Terry pairwise score models [139]: for parameter

µ > 0, p(b1 ≺ b2) = (D2
a,b2

+ µ)/(D2
a,b1

+D2
a,b2

+ 2µ).

5.3.3 Tuple Response Model

Our proposed technique is compatible with any tuple ranking model that satisfies (A2).

However, since we use the triplet response model listed above in the probabilistic MDS

formulation, combined with the need for a controlled test against CKL, we extend their

model to the tuplewise case as follows: we first decompose an oracle’s ranking into its

constituent triplets, and then apply

p(R(Qn) |DQn) ∝
k−2∏
i=1

D2
a,Ri+1(Qn) + µ

D2
a,Ri(Qn) +D2

a,Ri+1(Qn) + 2µ
,

for parameter µ > 0. This model corresponds to oracle behavior that ranks objects propor-

tionally to the ratio of their distances with respect to a, such that closer (resp. farther) objects

are more (resp. less) likely to be deemed similar. Models of this type are generally held to

be similar to the scale-invariant models present in some human perceptual systems [129].

5.3.4 Adaptive Algorithm

Combining these concepts, we have the following algorithm titled InfoTuple, summarized

in Algorithm 2: the algorithm requires that some initial set of randomly selected tuples be

73

labeled to provide a reasonable initialization of the learned similarity matrix. Since the focus

of this work is on the effectiveness of various adaptive selection methods, this initialization

is standardized across methods considered in our results. Specifically, following established

practice [121], a “burn-in” period is used where T0 random triplets are posed for each object

a in object set X , with a being the head of each query. Then, for each time step n we

learn a similarity matrix K̂n−1 on the set of previous responses rn−1 by using probabilistic

MDS. To make a comparison to CKL, we follow their procedure and subsequently pose a

single tuple for each head a ∈ X . However, it is possible to adaptively choose a with our

method by searching over both head and body objects for a maximally informative tuple.

The body of each tuple, given some head a, is chosen by uniformly downsampling the set

of possible bodies and selecting the one that maximizes the mutual information, calculated

using the aforementioned probability model in our estimation procedure. This highlights the

importance of computational tractability in estimating mutual information, since for a fixed

computing budget per selected query, less expensive mutual information estimation allows

for more candidate bodies to be considered. For a tuple size of k we denote the run of an

algorithm using that tuple size as InfoTuple-k.

5.4 Experiments

Our results on synthetic and human response datasets show that InfoTuple’s adaptive

selection outperforms both random query selection and that of CKL. This is true even when

normalizing for changes in tuple size and when normalizing for labeling effort, showing that

the incurred benefit is not only due to the increased information inherently present in larger

tuples but also due to our improved adaptive selection. We also show that there are inherent

consistency benefits to the use of larger queries, and that human labelers can respond to

these query types in practice without undue cost.

74

Algorithm 2: InfoTuple-k
Input: object set X , rate ω, sample size Nf , horizon T
r0 ← ∅ initialize set of oracle responses
K̂0 ← initialize embedding
for n = 1 to T do
D̂n−1 ← calculate pairwise distances from K̂n−1

σ2
n−1 ← 1

N2

∑
d∈D̂n−1

(
d− 1

N2

∑
d∈D̂n−1 d

)2

for all a ∈ X do
β ← downsampled k−1 sized bodies at rate ω
for all B ∈ β do
Q← {a} ∪B
Ds ∼ N (D̂n−1

Q , σ2
n−1), drawn Nf times

IB ← H

(∑
D∈Ds

p(R(Q)|D)
Nf

)
−
∑

D∈Ds

H(p(R(Q)|D))
Nf

end for
B ← arg maxB∈β IB
r ← oracle ranks objects in B relative to a
rn ← rn−1 ∪ r

end for
K̂n ← probabilisticMDS(rn)

end for
Output: K̂T

5.4.1 Datasets

To evaluate algorithm performance in a controlled setting, we constructed a synthetic

evaluation dataset by generating a point cloud drawn from a d-dimensional multivariate

normal distribution. To simulate oracle responses for this dataset, we use the popular

Plackett-Luce permutation model to sample a ranking for a given head and body [126,

140]. In this response model, each object in a tuple body is assigned a score according

to a scoring function, which in our case is based on the distance in the underlying space

between each object and the head. For a given subset of body objects, the probability of

an object being ranked as most similar to the head is its score divided by the scores of

all objects in that subset, and we generate each simulated oracle response by sequentially

sampling objects without replacement from a tuple according to this model. We chose this

tested response model to differ from the one we use to estimate mutual information in order

75

to demonstrate the robustness of our method to mismatched noise models, and evaluate

an additional Gaussian noise model in the appendix. This dataset was used to compare

InfoTuple-3, InfoTuple-4, InfoTuple-5, CKL, Random-3, and Random-5 across noiseless,

Gaussian, and Plackett-Luce oracles.

To demonstrate the broader applicability of our work in real-world settings and evaluate

our proposed technique on perceptual similarity data, we also collected a large dataset of

human responses to tuplewise queries through Amazon Mechanical Turk. Drawing 3000

food images from the Food-10k dataset [141], we presented over 7000 users with a total of

192,000 varying-size tuplewise queries chosen using Infotuple-3, InfoTuple-5, Random-3,

and Random-5 as selection strategies across three repeated runs of each algorithm. Users

were evaluated with one repeat query out of 25, and users who responded inconsistently

to the repeat query were discarded. Query bodies were always shuffled when presented

to minimize the impact of any possible order effect, and it was not found to be the case

that there was any significant order effect in the human responses. Initial embeddings for

each of these methods were trained on 5,000 triplet queries drawn from [141]. Although

experimental costs prevented us from extending the experiments in Figure 5.3c to larger

tuple sizes, in order to verify the feasibility of having humans respond to larger tuples in

practice we performed a separate data collection in which we asked users to rank randomly

selected tuples up to a size of k = 10 and recorded the labeling time for each response.

5.4.2 Evaluation Metrics

In order to directly measure the preservation of object rankings between the ground truth

object coordinates and the embedding learned from oracle responses, we use Kendall’s Tau

rank correlation coefficient [142]. To get an aggregate measure of quality when comparing

an estimated embedding to a ground truth embedding, we take the mean of Kendall’s Tau

across the total rankings obtained by setting each object as the head and sorting all objects

by embedding distance to the head. In our experiments with human respondents it is not

76

possible to use this measure, as the “ground truth” embedding that corresponds to human

preferences is not known. In these cases we instead measure the accuracy with respect

to a held-out set of queries drawn from the Food-10k dataset [141], which is a common

embedding quality metric [122, 141]. The holdout accuracy is the fraction of a held out set

of triplet comparisons that agrees with distances in the final learned embedding. To capture

a notion of the internal coherence between a set of oracle responses and an embedding that

is learned from them, we measure the mean rank correlation between each response in this

set and the ranking over the same objects imputed from the learned embedding–we refer to

this as the coherence of a set of tuples.

One issue that naturally arises when comparing results from strategies that select tuples of

different size is normalization, as larger tuples will naturally be more informative. In human-

response studies normalization is relatively straightforward, as we can simply normalize

with respect to the total time spent labeling queries in order to reflect the total labeling

cost. While other more comprehensive measures of labeler effort exist, labeling time is a

first-order approximation for the cognitive load of a labeling task and is the most salient

metric for determining the cost of a large-scale data collection. In the case of synthetic data,

we instead compute a normalized query count corresponding to the number of constituent

triplet comparisons defining the relation of each body point to the head in the tuple. This

is justified since in practice we decompose tuples in this way when feeding them into the

embedding algorithm, and corresponds to the size of a tuple’s transitive reduction (a common

representation in learning-to-rank literature [143]). Additional experimental details such as

hyperparameter selection are available in Appendix B.

5.4.3 Experimental Results

Using simulated data, we show a direct comparison of embedding quality from using

InfoTuple, CKL, and Random queries under a simulated deterministic oracle (Figure 5.3a)

and two simulated stochastic oracles (Figure 5.3b), and note that InfoTuple consistently

77

(a) (b) (c)

Figure 5.3: (a) and (b) show a comparison of the fidelity of the learned embedding to the
ground truth embedding with a simulated deterministic (left) and a stochastic (right) oracle,
plotted with ±1 standard error. Results shown are for a synthetic dataset of N = 500 points
from a two-dimensional dataset. (c) shows holdout accuracy on human-subject tests with
N = 5000.

outperformed the other methods. We note two important observations from these results:

first, regardless of the oracle used, larger tuple sizes for InfoTuple tended to perform better

and converge faster than did smaller tuple sizes even after normalizing for the tuple size,

showing the benefit of larger tuples beyond just providing more constituent triplets. Recalling

that the Plackett-Luce oracle was not directly modeled in our estimate of mutual information,

this lends support to the robustness of our technique to various oracle distributions. Second,

results on Random-3, Random-4 and Random-5 are comparable, implying both that the

improvements seen in InfoTuple are not solely due to the difference in tuple sizes and that

our choice of normalization is appropriate. Note that since random query performance did

not change with tuple size, Figure 5.3b only shows Random-3 for the sake of visual clarity.

Using the Mechanical Turk dataset described previously, we also show that these basic

results extend to real data situations when the stochastic response model is not exactly known,

and allows us to examine the complexity of acquiring data with increasing tuple sizes. While

larger tuples sizes produce more informative queries, it is possible that the information

gained incurs a hidden cost in the complexity or labeler effort involved in acquiring the

larger query. Specifically, it can be the case that maximizing query informativeness can

produce queries that are more difficult to answer [144]. Fortunately, the results on tuplewise

78

Figure 5.4: This violin plot shows the distribution of timing responses for random queries
from size k = 3 to k = 10, for the purpose of measuring labeler effort. The response time
for k ≤ 7 shows only modest increases in cost, although responses above these sizes require
significantly more effort.

comparisons collected for our Mechanical Turk dataset indicate that this is not an issue for

our proposed use case. In particular, Figure 5.3c shows the accuracy results when predicting

the labels from a held out set of 1200 triplet queries. These results show an increase in the

effectiveness of InfoTuple adaptive selection as well as increasing tuples sizes when plotted

against the aggregate query response time. In other words, any increase in query complexity

(measured by response time) is more than compensated for by the increased information

acquired by the query and the increase in the resulting quality of the learned embedding.

Figure 5.4 explores this issue further by examining the response times for our additional

timing dataset as a function of query size. There are only modest increases in the ranking

time cost with increasing tuple size, leading to the significant gains observed in normalized

information efficiency in this range of tuple sizes. While it is true that complexity cost will

continue to increase for larger tuple sizes and the gains in information efficiency are not

guaranteed to increase indefinitely and there may also be additional factors in the choice of

optimal tuple size for a given problem, we show that up to a modest tuple size it is strictly

more useful to ask tuplewise queries than triplet queries.

79

Figure 5.5: Measuring the aggregate coherence for all tuples of size 3 and size 5 (i.e. over
80,000 tuples at each size) with respect to an aggregate embedding learned for each tuple
size, we find that there is a significant difference in their internal coherence as measured by
a t-test (p=0.007181). We hypothesize that the difference is due to an increase in context
available to the oracle. Error bars depict ±1 standard error.

One possible reason for why tuples outperform triplets is that asking a query that contains

more objects provides additional context for the oracle about the contents of the dataset,

allowing it to more reliably respond to ambiguous comparisons than if these were asked

as triplet queries. As a result of this increase in context, oracles tend to respond to larger

queries significantly more coherently than they do to smaller ones, as shown in Figure 5.5.

We note that this is not guaranteed to increase indefinitely as larger tuples are considered,

but the effect is noticeable for modest increases in tuple sizes and is clear when comparing

5-tuples to triplets.

5.5 Discussion

In this chapter we proposed InfoTuple, an adaptive tuple selection strategy based on maxi-

mizing mutual information for relative tuple queries for similarity learning. We introduce

the tuple query for similarity learning, present a novel set of assumptions for efficient

estimation of mutual information, and through the collection of new user-response datasets,

provide new insights into the gains acquired by using larger tuples in learning efficiency

80

and query consistency. After testing on synthetic and real datasets, InfoTuple was found

to more effectively learn similarity-based object embeddings than random queries and

state-of-the-art triplet queries for both synthetic data (with a typical oracle model) and in a

real world experiment. The performance gains were especially evident for larger tuples and

even after normalizing for tuple size, indicating that the proposed selection objective that

maximizes the mutual information between the query response and the entire embedding

yields information gains that are not simply due to an increase in tuple size. Taken together,

these results suggest that large tuples selected with InfoTuple supply richer and more robust

embedding information than their triplet and random counterparts.

In practice, larger tuple sizes can provide more context for the oracle, increasing the

reliability of the responses without significant increases in labeling effort. In the pathological

extreme, the level of effort almost certainly outweighs the benefits of larger tuples, as an

oracle would have to provide a ranking over the entire dataset. Despite this downside in

extreme tuple sizes, our human study results indicate that performance increases hold up

in the real-world for moderate tuple sizes. This interesting tradeoff between informative-

ness per query and real-world oracle behavior merits a more comprehensive study on the

psychometric aspects of the problem, in the spirit of [16].

81

CHAPTER 6

ACTIVE EMBEDDING SEARCH VIA NOISY PAIRED COMPARISONS

6.1 Preference Searching with Paired Comparisons

In this chapter,1 we consider the task of user preference learning, where we have a set of

items (e.g., movies, music, or food) embedded in a Euclidean space and aim to represent

the preferences of a user as a continuous point in the same space (rather than simply a rank

ordering over the items) so that their preference point is close to items the user likes and far

from items the user dislikes. To estimate this point, we consider a system using the method

of paired comparisons, where during a sequence of interactions a user chooses which of

two given items they prefer [145]. For instance, to characterize a person’s taste in food, we

might ask them which one of two dishes they would rather eat for a number of different

pairs of dishes. The recovered preference point can be used in various tasks, for instance in

the recommendation of nearby items, personalized product creation, or clustering of users

with similar preferences. We refer to the entire process of querying via paired comparisons

and continuous preference point estimation as pairwise search, and note that this is distinct

from the problem of searching for a single discrete item in the fixed dataset. A key goal

of ours is to actively choose the items in each query and demonstrate the advantage over

non-adaptive selection.

More specifically, given N items, there are O(N2) possible paired comparisons. Query-

ing all such pairs is not only prohibitively expensive for large datasets, but also unnecessary

since not all queries are informative; some queries are rendered obvious by the accumulation

1The material before Section 6.5 is in collaboration with Dr. Andrew Massimino, Dr. Mark Davenport, and
Dr. Christopher Rozell. GC and AM contributed equally on most project components. GC was the lead author
of the associated publication in [4]. CR and MD supervised the project. Section 6.5 is in collaboration with
Matthew O’Shaughnessy, Dr. Mark Davenport, and Dr. Christopher Rozell. GC and MO contributed equally
to the project (which was initially developed during an overnight layover in Charles de Gaulle Airport) and
coauthored the resulting publication in [5]. CR and MD supervised the project.

82

of evidence about the user’s preference point, while others are considered ambiguous due

to noise in the comparison process. Given these considerations, the main contribution of

this chapter is the design and analysis of two new query selection algorithms for pairwise

search that select the most informative pairs by directly modeling redundancy and noise

in user responses. While previous active algorithms have been designed for related paired

comparison models, none directly account for probabilistic user behavior as we do here.

To the best of our knowledge our work is the first attempt to search a low-dimensional

embedding for a continuous point via paired comparisons while directly modeling noisy

responses.

Our approach builds upon the popular technique in active learning and Bayesian exper-

imental design of greedily maximizing information gain [39, 41, 20]. In our setting, this

corresponds to selecting pairs that maximize the mutual information between the user’s

response and the unknown location of their preference point. We provide new theoreti-

cal and computational insights into relationships between information gain maximization

and estimation error minimization in pairwise search, and present a lower bound on the

estimation error achievable by any query strategy.

Due to the known difficulty of analyzing greedy information gain maximization [19]

and the high computational cost of estimating mutual information for each pair in a pool,

we propose two strategies that each maximize new lower bounds on information gain and

are simpler to analyze and compute respectively. We present upper and lower bounds

on the performance of our first strategy, which then motivates the use of our second,

computationally cheaper strategy. We then demonstrate through simulations using a real-

world dataset how both strategies perform comparably to information maximization while

outperforming state-of-the-art techniques and randomly selected queries.

83

6.2 Background

6.2.1 Observation Model

Our goal in this work is to estimate a user’s preference point (denoted as vector w) with

respect to a given low-dimensional embedding of items constructed such that distances

between items are consistent with item similarities, where similar items are close together

and dissimilar items are far apart. While many items (e.g., images) exist in their raw form in

a high-dimensional space (e.g., pixel space), this low-dimensional representation of items

and user preferences offers the advantage of simple Euclidean relationships that directly

capture notions of preference and similarity, as well as mitigating the effects of the curse

of dimensionality in estimating preferences. Specifically, we suppose user preferences can

be captured via an ideal point model in which each item and user is represented using a

common set of parameters in Rd, and that a user’s overall preference for a particular item

decreases with the distance between that item and the user’s ideal point w [146]. This means

that any item placed exactly at the user would be considered “ideal” and would be the most

preferred over all other items. Although this model can be applied to the situation where a

particular item is sought, in general we do not assume the user point w to be co-located with

any item.

The embedding of the items can be constructed through a training set of triplet com-

parisons (paired comparisons regarding similarity of two items to a third reference item)

using one of several standard non-metric embedding techniques such as the Crowd Kernel

Learning [121] or Stochastic Triplet Embedding methods [122]. In this study, we assume

that such an embedding is given, presumably acquired through a large set of crowdsourced

training triplet comparisons. We do not consider this training set to be part of the learn-

ing cost in measuring a pairwise search algorithm’s efficiency, since our focus here is on

efficiently choosing paired comparisons to search an existing embedding.

In this work, we assume a noisy ideal point model where the probability of a user located

84

Figure 6.1: Paired comparisons between items can be thought of as a set of noisy hyperplane
queries. In the high-fidelity case, this uniquely identifies a convex region of Rd. In general,
we have a posterior distribution which only approximates the shape of the ideal cell around
the true user point, depicted with an x.

at w choosing item p over item q in a paired comparison is modeled using

P (p ≺ q) = f(kpq(‖w − q‖2 − ‖w − p‖2)), (6.1)

where p ≺ q denotes “item p is preferred to item q,” f(x) = 1/(1 + e−x) is the logistic

function, and kpq ∈ [0,∞) is the pair’s noise constant, which represents roughly the signal-

to-noise ratio of a particular query and may depend on the values of p and q. This type

of logistic noise model is common in psychometrics literature and bears similarity to the

Bradley–Terry model [139].

Note that eq. (6.1) can also be written as

P (p ≺ q) = f(kpq(a
Tw − b)),

where a = 2(p − q) and b = ‖p‖2 − ‖q‖2 encode the normal vector and threshold of a

hyperplane bisecting items p and q. After a number of such queries, the response model in

eq. (6.1) for each query can be multiplied to form a posterior belief about the location of w,

as depicted in Figure 6.1.

85

Note that we allow the noise constant kpq to differ for each item pair to allow for differing

user behavior depending on the geometry of the items being compared. When kpq → ∞,

this supposes a user’s selection is made with complete certainty and cannot be erroneous.

Conversely, kpq = 0 corresponds to choosing items randomly with probability 1/2. Varying

kpq allows for differing reliability when items are far apart versus when they are close

together. Some concrete examples for setting this parameter are:

constant : k(1)
pq = k0, (K1)

normalized : k(2)
pq = k0‖a‖−1 =

1

2
k0‖(p− q)‖−1, (K2)

decaying : k(3)
pq = k0 exp(−‖a‖)

= k0 exp(−2‖(p− q)‖). (K3)

6.2.2 Related Work

There is a rich literature investigating statistical inference from paired comparisons and

related ordinal query types. However, many of these works target a different problem than

considered here, such as constructing item embeddings [121], training classifiers [147],

selecting arms of bandits [148], and learning rankings [149, 126, 150, 151, 152] or scores

[153, 154] over items.

Paired comparisons have also been used for learning user preferences: [155] models user

preferences as a vector, but preferences are modeled as linear weightings of item features

rather than by relative distances between the user and items in an embedding, resulting in a

significantly different model (e.g., monotonic) of preference. [156] considers the task of

actively estimating the maximizer of an unknown preference function over items, while

[136] and [157] actively approximate the preference function itself, the former study notably

using information gain as a metric for selecting queries. Yet, these approaches are not

directly comparable to our methods since they do not consider a setting where user points

are assigned within an existing low-dimensional item embedding. [121] does consider the

86

same item embedding structure as our setting and actively chooses paired comparisons

that maximize information gain for search, but only seeks discrete items within a fixed

dataset rather than estimating a continuous preference vector as we do here. Furthermore we

provide novel insights into selecting pairs via information gain maximization, and mainly

treat information gain for pairwise search as a baseline in this work since our primary focus

is instead on the development, analysis, and evaluation of alternative strategies inspired by

this approach.

The most directly relevant prior work to our setting consists of the theory and algorithms

developed in [158] and [116]. In [158], item pairs are selected in stages to approximate a

Gaussian point cloud that surrounds the current user point estimate and dyadically shrinks

in size with each new stage. In [116], previous query responses define a convex polytope in

d dimensions (as in Figure 6.1), and their algorithm only selects queries whose bisecting

hyperplanes intersect this feasible region. While this algorithm in its original form only

produces a rank ordering over the embedding items, for the sake of a baseline comparison

we extend it to produce a preference point estimate from the feasible region. Neither of

these studies fundamentally models or handles noise in their active selection algorithms;

slack variables are used in the user point estimation of [158] to allow for contradicting query

responses, but the presence of noise is not considered when selecting queries. In an attempt

to filter non-persistent noise (the type encountered in our work), [116] simply repeat each

query multiple times and take a majority vote as the user response, but the items in the query

pair are still selected using the same method as in the noiseless setting. Nevertheless, these

methods provide an important baseline.

6.3 Query Selection

We now proceed to describe the pair selection problem in detail along with various theoretical

and computational considerations. We show that the goal of selecting pairwise queries to

minimize estimation error leads naturally to the strategy of information maximization and

87

subsequently to the development of our two novel selection strategies.

6.3.1 Minimizing Estimation Error

Let W ∈ Rd (d ≥ 2) denote a random vector encoding the user’s preference point, assumed

for the sake of analysis to be drawn from a uniform distribution over the hypercube [−1
2
, 1

2
]d

denoted by the prior density of p0(w). Let Yi ∈ {0, 1} denote the binary response to

the ith paired comparison involving items pi and qi, with Yi = 0 indicating a preference

for qi and Yi = 1 a preference for pi. After i queries, we have the vector of responses

Y i = {Y1, Y2, . . . Yi}. We assume that each response Yi is conditionally independent from

previous responses Y i−1 when conditioned on preference W . Applying this assumption in

conjunction with a recursive application of Bayes’ rule, after i queries we have a posterior

density of

pi(w) ≡ p(w|Y i) =
p0(w)

∏i
j=1 p(Yj|w)

p(Y i)
, (6.2)

where p(Yi|w) is given by the model in eq. (6.1). This logistic likelihood is log-concave, and

since p0(w) is also log-concave we have from Section 2.1 that the posterior density given in

eq. (6.2) is log-concave.

Suppose that after i queries, the posterior pi(w) is used to produce a Bayesian user point

estimate Ŵi. We denote the mean squared error for this estimate by MSEi = EW |Y i [‖W −

Ŵi‖2
2], which provides a direct measure of our estimation error and is a quantity we wish

to minimize by adaptively selecting queries based on previous responses. One approach

might be to greedily select an item pair such that MSEi+1 is minimized in expectation after

the user responds. However, this would require both updating the posterior distribution

and estimating MSEi+1 for each possible response over all item pairs. This would be

very computationally expensive since under our model there is no closed-form solution

for MSEi+1, and so each such evaluation requires a “lookahead” batch of Monte Carlo

samples from the posterior. Specifically, if S posterior samples are generated for each

MSEi+1 evaluation over a candidate pool of M pairs at a computational cost of C per

88

sample generation, and MSEi+1 is estimated with O(dS) operations per pair, this strategy

requires O((C + d)SM) computations to select each query. This is undesirable for adaptive

querying settings where typically data sets are large (resulting in a large number of candidate

pairwise queries) and queries need to be selected in or close to real-time.

Instead, consider the covariance matrix of the user point posterior after i queries, denoted

as

ΣW |Y i = E[(W − E[W |Y i])(W − E[W |Y i])T |Y i].

For the minimum mean squared error (MMSE) estimator, given by the posterior mean

Ŵi = E[W |Y i], we have

MSEi = Tr(ΣW |Y i) ≥ d|ΣW |Y i |
1
d ,

where the last inequality follows from the arithmetic-geometric mean inequality (AM–

GM) [159]. This implies that a necessary condition for a low MSE is for the posterior

volume, defined here as the determinant of the posterior covariance matrix, to also be low.

Unfortunately, actively selecting queries that greedily minimize posterior volume is too

computationally expensive to be useful in practice since this also requires a set of “lookahead”

posterior samples for each candidate pair and possible response, resulting in a computational

complexity of O(((C + d2)S + d3)M) to select each query from the combined cost per

pair of generating samples (O(CS)), estimating ΣW |Y i (O(d2S)), and calculating |ΣW |Y i|

(O(d3)).

6.3.2 Information Theoretic Framework

By utilizing statistical tools from information theory, we can select queries that approx-

imately minimize posterior volume (and hence tend to encourage low MSE) at a more

reasonable computationally cost. Furthermore, an information theoretic approach provides

convenient analytical tools which we use to provide performance guarantees for the query

89

selection methods we present.

Towards this end, we define the posterior entropy as the differential entropy of the

posterior distribution after i queries:

hi(W) ≡ h(W |yi) = −
∫
w

pi(w) log2(pi(w))dw. (6.3)

As we show in the following lemma, the posterior entropy of log-concave distributions is

both upper and lower bounded by a monotonically increasing function of posterior volume,

implying that low posterior entropy is both necessary and sufficient for low posterior volume,

and hence a necessary condition for low MSE. The proofs of this lemma and subsequent

results are provided in the supplementary material.

Lemma 6.3.1. For a log-concave posterior distribution p(w|Y i) in d ≥ 2 dimensions, where

cd = e2d2/(4
√

2(d+ 2)),

d

2
log2

2|ΣW |Y i |
1
d

e2cd
≤ hi(W) ≤ d

2
log2(2πe|ΣW |Y i |

1
d).

This relationship between MSE, posterior volume, and posterior entropy suggests a

strategy of selecting queries that minimize the posterior entropy after each query. Since the

actual user response is unknown at the time of query selection, we seek to minimize the

expected posterior entropy after a response is made, i.e., EYi+1
[hi+1(W)|yi]. Using a standard

result from information theory, we have EYi [hi(W)|yi−1] = hi−1(W) − I(W ;Yi|yi−1),

where I(W ;Yi|yi−1) is the mutual information between the location of the unknown user

point and the user response, conditioned on previous responses. Examining this identity, we

observe that selecting queries that minimize the expected posterior entropy is equivalent to

selecting queries that maximize the mutual information between the user point and the user

response, referred to here as the information gain.

In this setting, it is generally difficult to obtain sharp performance bounds for query

selection via information gain maximization. Instead, we use information theoretic tools

90

along with Lemma 6.3.1 to provide a lower bound on MSE for any estimator and query

selection scheme in a manner similar to [160] and [27]:

Theorem 6.3.2. For any user point estimate given by Ŵi after i queries, the MSE (averaged

over user points and query responses) for any selection strategy is bounded by

EW,Y i‖W − Ŵi‖2
2 ≥

d2−2 i
d

2πe
.

This result implies that the best rate of decrease in MSE one can hope for is exponential

in the number of queries and slows down in a matter inversely proportional to the dimension,

indicating quicker possible preference convergence in settings with lower dimensional

embeddings. To estimate the information gain of a query, we can use the symmetry of

mutual information to write

I(W ;Yi|yi−1) = H(Yi|yi−1)−H(Yi|W, yi−1) (6.4)

H(Yi|yi−1) = −
∑

Yi∈{0,1}

p(Yi|yi−1) log2 p(Yi|yi−1) (6.5)

H(Yi|w, yi−1) = −
∑

Yi∈{0,1}

p(Yi|w) log2 p(Yi|w) (6.6)

H(Yi|W, yi−1) = EW |yi−1 [H(Yi|W, yi−1)]. (6.7)

Unlike the greedy MSE and posterior volume minimization strategies, information gain

estimation only requires a single batch of posterior samples at each round of query selection,

which is used to estimate the discrete entropy quantities in eqs. (6.4) to (6.7). Eq. (6.4) can

be estimated in O(dS) operations per pair, resulting in a computational cost of O(dSM)

for selecting each query, which although more computationally feasible than the methods

proposed so far is still likely prohibitive for highly accurate information gain estimates over

a large pool of candidate pairs.

Because of these analytical and computational challenges, we develop two strategies

91

that mimic the action of maximizing information gain while being more analytically and

computationally tractable, respectively. In the next section we present our first strategy,

which we analyze for more refined upper and lower bounds on the number of queries needed

to shrink the posterior to a desired volume. Then we introduce a second strategy which

benefits from reduced computational complexity while still remaining theoretically coupled

to maximizing information gain.

6.3.3 Strategy 1: Equiprobable, Max-variance

In developing an approximation for information gain maximization, consider the scenario

where arbitrary pairs of items can be generated (unconstrained to a given dataset), resulting

in a bisecting hyperplane parameterized by (ai, bi). In practice, such queries might corre-

spond to the generation of synthetic items via tools such as generative adversarial networks

[161]. With this freedom, we could consider an equiprobable query strategy where bi is

selected so that each item in the query will be chosen by the user with probability 1
2
. This

strategy is motivated by the fact that the information gain of query i is upper bounded by

H(Yi|yi−1), which is maximized if and only if the response probability is equiprobable [27].

To motivate the selection of query hyperplane directions, we define a query’s projected

variance, denoted as σ2
i , as the variance of the posterior marginal in the direction of a query’s

hyperplane, i.e., σ2
i = aTi ΣW |yi−1ai. This corresponds to a measure of how far away the user

point is from the hyperplane query, in expectation over the posterior distribution. With this

notation, we have the following lower bound on information gain for equiprobable queries.

Proposition 6.3.3. For any “equiprobable” query scheme with noise constant ki and

projected variance σ2
i , for any choice of constant 0 ≤ c ≤ 1 we have

I(W ;Yi|yi−1) ≥
(

1− hb
(
f
(ckiσi

2

)))
(1− c) =: Lc,ki(σi),

where hb(p) = −p log2 p− (1− p) log2(1− p).

92

This lower bound is monotonically increasing with kiσi and achieves a maximum

information gain of 1 bit at ki →∞ and/or σi →∞ (with an appropriate choice of c). This

suggests choosing ai that maximize projected variance in addition to selecting bi according

to the equiprobable strategy. Together, we refer to the selection of equiprobable queries

in the direction of largest projected variance as the equiprobable-max-variance scheme, or

EPMV for short.

Our primary result concerns the expected number of comparisons (or query complexity)

sufficient to reduce the posterior volume below a specified threshold set a priori, using

EPMV.

Theorem 6.3.4. For the EPMV query scheme with each selected query satisfying ki‖ai‖≥

kmin for some constant kmin>0, consider the stopping time Tε=min{i : |ΣW |yi |
1
d <ε} for

stopping threshold ε > 0. For τ1 = d
2

log2(1
2πeε

) and τ2 = d
2

log2
e2cd
2ε

, we have

τ1 ≤ E[Tε] ≤ τ2 +
τ2 + 1

l(τ2)
− 1

l(τ2)

∫ τ2

0

l(x)dx,

where l(x) = Lc,kmin

(
2
−x
d√

2πe

)
for any constant 0 ≤ c ≤ 1 as defined in Proposition 6.3.3.

Furthermore, the lower bound is true for any query selection scheme.

This result follows from a martingale stopping-time analysis of the entropy at each query.

Our next theorem presents a looser upper bound, but is more easily interpretable.

Theorem 6.3.5. The EPMV scheme, under the same assumptions as in Theorem 6.3.4,

satisfies

E[Tε] = O

(
d log

1

ε
+

(
1

εk2
min

)
d2 log

1

ε

)
.

Furthermore, for any query scheme, E[Tε] = Ω
(
d log 1

ε

)
.

This result has a favorable dependence on the dimension d, and the upper bound can

be interpreted as a blend between two rates, one of which matches that of the generic

lower bound. The second term in the upper bound provides some evidence that our ability

93

to recover w worsens as kmin decreases. This is intuitively unsurprising since small kmin

corresponds to the case where queries are very noisy. We hypothesize that the absence of

such a penalty term in the lower bound is an artifact of our analysis, since increasing noise

levels (i.e., decreasing kmin) should limit achievable performance by any querying strategy.

On the other hand, for asymptotically large ki, we have the following corollary:

Corollary 6.3.1. In the noiseless setting (kmin →∞), EPMV has optimal expected stopping

time complexity for posterior volume stopping.

Proof. When kmin →∞, from Theorem 6.3.5 E[Tε] = O
(
d log 1

ε

)
; for any scheme, E[Tε] =

Ω
(
d log 1

ε

)
.

Taken together, these results suggest that EPMV is optimal with respect to posterior

volume minimization up to a penalty term which decreases to zero for large noise constants.

While low posterior volume is only a necessary condition for low MSE, this result could be

strengthened to an upper bound on MSE by bounding the condition number of the posterior

covariance matrix, which is left to future work. Yet, as we empirically demonstrate in

Section 6.4, in practice our methods are very successful in reducing MSE.

While EPMV was derived under the assumption of arbitrary hyperplane queries, de-

pending on the application we may have to select a pair from a fixed pool of items in a

given dataset. For this purpose we propose a metric for any candidate pair that, when

maximized over all pairs in a pool, approximates the behavior of EPMV. For a pair with

items p and q in item pool P , let apq = 2(p− q) and bpq = ‖p‖2 − ‖q‖2 denote the weights

and threshold parameterizing the bisecting hyperplane. We choose a pair that maximizes the

utility function (for some λ > 0)

η1(p, q;λ) = kpq

√
aTpqΣW |Y i−1apq − λ

∣∣∣p̂1 −
1

2

∣∣∣ (6.8)

p̂1 = P (Yi=1|Y i−1) = EW |Y i−1 [f(kpq(a
T
pqW − bpq))].

This has the effect of selecting queries which are close to equiprobable and align with the

94

direction of largest variance, weighted by kpq to prefer higher fidelity queries. While ΣW |Y i−1

can be estimated once from a batch of posterior samples, p̂1 must be estimated for each

candidate pair in O(dS) operations, resulting in a computational cost of O(dSM) which is

on the same order as directly maximizing information gain. For this reason, we develop a

second strategy that approximates EPMV while significantly reducing the computational

cost.

6.3.4 Strategy 2: Mean-cut, Max-variance

Our second strategy is a mean-cut strategy where bi is selected such that the query hyperplane

passes through the posterior mean, i.e. aTi E[W |Y i−1]− bi = 0. For such a strategy, we have

the following proposition:

Proposition 6.3.6. For mean-cut queries with noise constant ki and projected variance σ2
i

we have ∣∣∣p(Yi|yi−1)− 1

2

∣∣∣ ≤ e− 2

2e
+

ln 2

kiσi

and, I(W ;Yi|yi−1) ≥ hb

(
1

e
− ln 2

kiσi

)
− π2(log2 e)

3kiσi
.

For large projected variances, we observe that |p(Yi|yi−1) − 1
2
| / 0.14, suggesting

that mean-cut queries are somewhat of an approximation to equiprobable queries in this

setting. Furthermore, notice that the lower bound to information gain in Proposition 6.3.6

is a monotonically increasing function of the projected variance. As σi →∞, this bound

approaches hb(1/e) ≈ 0.95 which is nearly sharp since a query’s information gain is

upper bounded by 1 bit. This implies some correspondence between maximizing a query’s

information gain and maximizing the projected variance, as was the case in EPMV. Hence,

our second strategy selects mean-cut, maximum variance queries (referred to as MCMV) and

serves as an approximation to EPMV while still maximizing a lower bound on information

gain.

95

Algorithm 3: Pairwise search with noisy comparisons
Input: item set X , parameters S, β, λ
P ← set of all pairwise queries from items in X
W̃0, µ0,Σ0 ← initialize from samples of prior
for i = 1 to T do
Pβ ← uniformly downsample P at rate 0 < β ≤ 1

InfoGain: pi, qi ← arg max
p,q∈Pβ

η0(p, q; W̃i−1)

EPMV: pi, qi ← arg max
p,q∈Pβ

η1(p, q;λ, W̃i−1)

MCMV: pi, qi ← arg max
p,q∈Pβ

η2(p, q;λ, µi−1,Σi−1)

yi ← PairedComparison(pi, qi) , yi ← yi ∪ yi−1.
W̃i ← batch of S samples from posterior W |Y i

µi,Σi ← Mean(W̃i),Covariance(W̃i)

Ŵi ← µi
end for

Output: user point estimate ŴT

For implementing MCMV over a fixed pool of pairs (rather than arbitrary hyperplanes),

we calculate the orthogonal distance of each pair’s hyperplane to the posterior mean as

|aTpq E[W |Y i−1] − bpq|/‖apq‖2 and the projected variance as aTpqΣW |Y i−1apq. We choose a

pair that maximizes the following function which is a tradeoff (tuned by λ > 0) between

minimizing distance to the posterior mean, maximizing noise constant, and maximizing

projected variance:

η2(p, q;λ) = kpq

√
aTpqΣW |Y i−1apq − λ

|aTpq E[W |Y i−1]− bpq|
‖apq‖2

. (6.9)

This strategy is attractive from a computational standpoint since the posterior mean E[W |Y i−1]

and covariance ΣW |Y i−1 can be estimated once in O(d2S) computations, and subsequent

calculation of the hyperplane distance from mean and projected variance requires only

O(d2) computations per pair. Overall, this implementation of the MCMV strategy has a

computational complexity of O(d2(S + M)), which scales more favorably than both the

information gain maximization and EPMV strategies.

We unify the information gain (referred to as InfoGain), EPMV, and MCMV query

96

selection methods under a single framework described in Algorithm 3. At each round

of querying, a pair is selected that maximizes a utility function η(p, q) over a randomly

downsampled pool of candidates pairs, with η0(p, q) ≡ I(W ;Yi|yi−1) for InfoGain and η1

from eq. (6.8) and η2 from eq. (6.9) denoting the utility functions of EPMV and MCMV,

respectively. We include a batch of posterior samples denoted by W̃ as an input to η0 and η1

to emphasize their dependence on posterior sampling, and add mean and covariance inputs

to η2 since once these are estimated, MCMV requires no additional samples to select pairs.

For all methods, we estimate the user point as the mean of the sample batch since this is the

MMSE estimator.

6.4 Results

To evaluate our approach, we constructed a realistic embedding (from a set of training

user-response triplets) consisting of multidimensional item points and simulated our pair-

wise search methods over randomly generated preference points and user responses. We

constructed an item embedding of the Yummly Food-10k dataset of [141, 135], consisting

of 958,479 publicly available triplet comparisons assessing relative similarity among 10,000

food items. The item coordinates are derived from the crowdsourced triplets using the

popular probabilistic multidimensional scaling algorithm of [121] and the implementation

obtained from the NEXT project2.

6.4.1 Methods Comparison

We compare InfoGain, EPMV, and MCMV as described in Algorithm 3 against several

baseline methods:

Random: pairs are selected uniformly at random and user preferences are estimated as the

posterior mean.

GaussCloud-Q: pairs are chosen to approximate a Gaussian point cloud around the prefer-

2http://nextml.org

97

http://nextml.org

ence estimate that shrinks dyadically over Q stages, as detailed in [158].

ActRank-Q: pairs are selected that intersect a feasible region of preference points and

queried Q times; a majority vote is then taken to determine a single response, which is used

with the pair hyperplane to further constrain the feasible set [116]. Since the original goal of

the algorithm was to rank embedding items rather than estimate a continuous preference

point, it does not include a preference estimation procedure; in our implementation we

estimate user preference as the Chebyshev center of the feasible region since it is the deepest

point in the set and is simple to compute [159].

In each simulation trial, we generate a point W uniformly at random from the hypercube

[−1, 1]d and collect paired comparisons using the item points in our embedding according to

the methods described above. The response probability of each observation follows eq. (6.1)

(referred to herein as the “logistic” model), using each of the three schemes for choosing kpq

described in (K1) through (K3). In each scheme we optimized the value of k0 over the set of

training triplets via maximum-likelihood estimation according to the logistic model. We use

the Stan Modeling Language [162] to generate posterior samples when required, since our

model is log-concave and therefore is particularly amenable to Markov chain Monte Carlo

methods [163].

Note that unlike GaussCloud-Q and ActRank-Q, the Random, InfoGain, EPMV, and

MCMV methods directly exploit a user response model in the selection of pairs and estima-

tion of preference points, which can be advantageous when a good model of user responses

is available. Below we empirically test each method in this matched scenario, where the

noise type (logistic) and the model for kpq (e.g., “constant”, “normalized”, or “decaying”)

are revealed to the algorithms. We also test a mismatched scenario by generating response

noise according to a non-logistic response model while the methods above continue to

calculate the posterior as if the responses were logistic. Specifically, we generate responses

98

according to a “Gaussian” model

yi = sign(kpq(a
T
i w − bi) + Z) Z ∼ N (0, 1),

where k0 and the model for kpq are selected using maximum-likelihood estimation on the

training triplets.

6.4.2 Mean Squared Error Evaluation

The left column of Figure 6.2 plots the MSE of each method’s estimate with respect to

the ground truth location over the course of a pairwise search run. In the matched model

case of Figure 6.2a, our strategies outperform Random, ActRank-Q, and GaussCloud-Q

for multiple values of Q by a substantial margin. Furthermore, both of our strategies

performed similarity to InfoGain, corroborating their design as information maximization

approximations. Note that Random outperforms the other baseline methods, supporting the

use of Bayesian estimation in this setting (separately from the task of active query selection).

Although mismatched noise results in decreased performance overall in Figure 6.2c, the

same relative trends between the methods as in Figure 6.2a are evident.

6.4.3 Item Ranking Evaluation

We also consider each method’s performance with respect to ranking embedding items in

relation to a preference point. For each trial, a random set of 15 items is sampled from

the embedding without replacement and ranked according to their distance to a user point

estimate. This ranking is compared to the ground truth ranking produced by the true user

point by calculating a normalized Kendall’s Tau distance, which is 0 for identical rankings

and 1 for completely discordant rankings [116]. This metric measures performance in the

context of a recommender system type task (a common application of preference learning)

rather than solely measuring preference estimation error. This metric is depicted in the right

99

column of Figure 6.2, for the matched model case in Figure 6.2b and mismatched case

in Figure 6.2d. The same trends as observed in MSE analysis occur, with our strategies

performing similarly to InfoGain and outperforming all other methods. This is a particularly

noteworthy result in that our method produces more accurate rankings than ActRank-Q,

which to our knowledge is the state-of-the-art method in active embedding ranking.

(a) Estimation error: matched logistic
noise, d = 4

(b) Ranking performance: matched logistic noise,
d = 4

(c) Estimation error: mismatched Gaus-
sian noise, d = 4

(d) Ranking performance: mismatched Gaussian
noise, d = 4

Figure 6.2: Performance evaluation over 80 simulated search queries, averaged over 50 trials
per method and plotted with ± one standard error. (Left Column) MSE. (Right Column) for
each trial, a batch of 15 items was uniformly sampled without replacement from the dataset,
and the normalized Kendall’s Tau distance (lower distance is better) was calculated between
a ranking of these items by distance to the ground truth preference point and a ranking by
distance to the estimated point. To get an unbiased estimate, this metric was averaged over
1000 batches per trial, and error bars calculated with respect to the number of trials. (Top
Row) “normalized” logistic model with matching noise in d = 4. (Bottom Row) “decaying”
logistic model with mismatched Gaussian “normalized” noise in d = 4. Additional plots
testing a wider selection of parameters are available in the supplement. Overall, our new
strategies (EPMV, MCMV) outperform existing methods and also perform comparably to
information gain maximization (InfoGain), which they were designed to approximate.

100

6.5 Extension to Ideal Point Estimation with Dynamics

In this section, we discuss an extension of pairwise search to the case where the ideal point

evolves over time according to unknown dynamics. Many applications for pairwise search

can be naturally extended to include time-varying dynamics and system identification. For

example, in a simple two- or three-dimensional setting one might wish to triangulate an

object’s location using an array of sensors, where the only available information is which

of any two given sensors the object is closer to (since exact sensor range measurements

might be unavailable or too noisy to be utilized directly). Rather than being static and a

known object type, the localized object may be one of several vehicle types navigating along

a path. In this case, one may wish to jointly estimate the vehicle’s position, velocity, and

acceleration (state estimation), as well as identify the vehicle type from its dynamics (system

identification). In higher dimensional settings such as recommender systems [155, 156, 164,

149, 126, 150, 151, 152], a user’s preferences between pairs of items may change with time,

and these changes may be characteristic of one of several user phenotypes. While the task

of selecting pairs and estimating the state vector has been studied in the static case [4, 165,

166, 158], the time-varying setting has not been addressed.

Mathematically, we consider the problem of tracking the evolution of a vector w ∈ Rd

which varies over time according to an unknown dynamics model f as

xt =

wt
vt

 , xt+1 = f (xt) + νt+1, x0 ∼ P0, (6.10)

where vt ∈ Rl is a vector of latent state variables (e.g., velocity and acceleration) which

together with wt comprise the state vector xt ∈ Rd+l. The dynamics are perturbed by

innovation noise νt+1 ∼ N (0, R) with known covariance R. We assume that f is drawn

from a finite set of candidate dynamics models F = {f1, f2, . . . fK} with prior distribution

pf (fi), and that the initial state is drawn from a known prior distribution P0.

101

wt−1

wt

wt+1

f

f

piqi

Figure 6.3: We consider the problem of using paired comparisons to jointly infer the
trajectory of the state wM0 and the dynamics model f ∈ F that describes its evolution.

At each time step t = 0, . . . ,M , we can access the state only through binary measure-

ments consisting of paired comparisons that indicate which of two landmark points wt is

closer to. Our task is to actively select a sequence of paired comparisons between landmark

pairs to jointly estimate the state trajectory xM0 and identify the true dynamics model f .

In Section 6.5.1, we extend ideas for active selection of paired comparisons from

the static setting to the time-varying setting, and use these insights in Section 6.5.2 to

describe our Bayesian particle filter-based method for measurement selection, state tracking,

and system identification. We illustrate the operation of our method with an example in

Section 6.5.3, and evaluate its performance in Section 6.5.4.

6.5.1 Measurement Selection

At each time step t we take a measurement of the form ‖pt − wt‖ ≷ ‖qt − wt‖, where

pt, qt are selected from a known set of landmark points X ⊂ Rd. Geometrically, this paired

comparison indicates that wt lies on one side of the hyperplane bisecting points pt and qt,

as illustrated in Figure 6.3. This hyperplane is defined by normal vector at = pt−qt
‖pt−qt‖ and

intercept bt = ‖pt‖2−‖qt‖2
2‖pt−qt‖ . However, in many practical applications we can access only noisy

measurements, where comparisons are more likely to be erroneous when wt is equidistant

from the landmark points (i.e., close to the bisecting hyperplane). To represent this type of

102

observation noise, we denote the tth measurement by Yt ∈ {0, 1}, where Yt = 1 indicates

that wt is closer to pt and Yt = 0 indicates that wt is closer to qt. We then model Yt with the

logistic likelihood

p(Yt = 1 |wt) =
1

1 + e−k(aTt wt−bt)
, (6.11)

where k represents the signal-to-noise ratio of the measurements. We assume that Yt depends

only on wt; that is, letting A ⊥⊥ B | C denote that A is conditionally independent of B

given C, we have Yt ⊥⊥ wu | wt for u 6= t, Yt ⊥⊥ vM0 | wt, and Yt ⊥⊥ f | wt. We adopt

a Bayesian framework, representing our knowledge of the state xt and dynamics model

f by the posterior densities p
(
xt | yt−1

0

)
and p

(
fi | yt−1

0

)
, where yt denotes an observed

instantiation of Yt.

A natural question arising in this stochastic measurement model is how to select the

measured paired comparison at each time step. In the static setting, as we described earlier

in this chapter it has been shown that some measurements become more informative than

others as w is localized, and dramatic improvements in inference are possible by adaptively

selecting landmark points [158, 4]. In the time-varying setting considered here, at each time

step we wish to select the landmark points (pt, qt) defining measurement Yt that provide

the most information about the trajectory xM0 and the dynamics model f . We propose a

similar approach as earlier in the chapter by selecting paired comparisons that maximize

the information gain [20] each measurement provides about both the state trajectory and

dynamics model, defined as the mutual information between the measurement Yt and

unknown trajectory xM0 and dynamics f , conditioned on the previous measurements yt−1
0 :

(pt, qt) = arg max
p,q∈X

I
(
Yt ; xM0 , f | yt−1

0

)
. (6.12)

Intuitively, this quantity represents the amount a paired comparison decreases our uncertainty

about the trajectory and dynamics model.

Because we seek to jointly infer the trajectory and dynamics model, it is at first unclear

103

whether one should select measurements that are more informative about the trajectory or

about the model. However, the conditional independence of the measurement model in

eq. (6.11) greatly simplifies this design choice: applying the chain rule of mutual information

[27] to eq. (6.12) and simplifying using the conditional independences admitted by our

model yields

I(Yt;x
M
0 , f | yt−1

0) = I(Yt;w
M
0 , v

M
0 , f | yt−1

0)

= I(Yt;w
M
0 | yt−1

0) + I(Yt; v
M
0 |wM0 , yt−1

0) + I(Yt; f |wM0 , vM0 , yt−1
0)

= I(Yt;w
M
0 | yt−1

0)

= I(Yt;wt | yt−1
0) + I(Yt;w

t−1
0 , wMt+1|wt, yt−1

0)

= I(Yt;wt | yt−1
0).

Therefore, jointly maximizing the information gain with respect to the entire state trajectory

and underlying dynamics model is equivalent to simply selecting paired comparisons that

maximize the information gain about wt.

6.5.2 Methods

Unfortunately, the measurement likelihood in eq. (6.11) does not admit a closed-form ex-

pression for the information gain I(Yt;wt | yt−1
0) of a candidate pair, and approximating it

with samples from the posterior p(wt|yt−1
0) is computationally prohibitive when evaluating

a large pool of pairs. Instead, as in the static case we approximate the action of maximizing

information gain by using the MCMV selection strategy, selecting the pair whose bisecting

hyperplane cuts through the posterior mean in the direction of maximum variance. Specifi-

cally, we select measurements by evaluating an acquisition function for each candidate pair

in a downsampled pair pool and selecting the maximizing pair, as described in Algorithm 4.

As described previously, this procedure has a computational complexity that scales favorably

with the number of candidate pairs, and is a provable approximation to information gain

104

maximization.

To select measurement pairs using MCMV, we need to evaluate the posterior mean

µt := Ewt
[
wt|yt−1

0

]
and covariance Σt := Ewt

[
(wt − µt)(wt − µt)T |yt−1

0

]
, which can be

computed as

µt =
∑
i

Ewt
[
wt|fi, yt−1

0

]
p(fi|yt−1

0) (6.13)

Σt =
∑
i

Ewt
[
wtw

T
t |fi, yt−1

0

]
p(fi|yt−1

0)− µtµTt . (6.14)

After taking a measurement, we update the posteriors over xt and f , estimate the state as the

posterior mean

x̂t := E[xt|yt−1
0] =

∑
i

Ext
[
xt|fi, yt−1

0

]
p(fi|yt−1

0), (6.15)

and update the dynamics model posterior as

p(fi|yt0) =
p(yt|fi, yt−1

0)p(fi|yt−1
0)

p(yt|yt−1
0)

=
Ewt

[
p(yt|wt)|fi, yt−1

0

]
p(fi|yt−1

0)∑
j Ewt

[
p(yt|wt)|fj, yt−1

0

]
p(fj|yt−1

0)
. (6.16)

We observe that to calculate each of these quantities we can simply track a separate state

posterior p(xt|yt−1
0 , fi) for each candidate dynamical system i = 1, . . . , K, from which we

can compute the necessary expected values.

Because our pairwise measurement process eq. (6.11) is nonlinear, we cannot use the

closed form updates of the Kalman filter to track each posterior p(xt|yt−1
0 , fi). Instead, we

use the particle filter, which allows us to incorporate both the nonlinear likelihood and

an arbitrary (potentially nonlinear) candidate dynamics models [167]. In the particle filter

framework, the required probability distributions are represented by Monte Carlo particles

which can be propagated through the candidate dynamics models fi. We use N particles to

105

Algorithm 4: MCMV-DF using particle filter

1: Draw N particles from p0(x) for each candidate dynamics model
2: for t = 1, . . . ,M do
3: Estimate state x̂t using eq. (6.15)
4: Estimate µt and Σt from all particles using eq. (6.13) through eq. (6.14)
5: Pβ ← downsample set of candidate pairs at rate β

6: (pt, qt)← arg maxPβ

√
aTpqΣtapq − |aTpqµt − bpq|

7: yt ← PairedComparison(pt, qt), yt0 ← yt ∪ yt−1
0

8: for i = 1, . . . , K do
9: Resample particles using likelihood eq. (6.11)

10: Propagate particles through dynamics eq. (6.10)
11: end for
12: Update p(fi|yt0) using eq. (6.16)
13: end for
14: f ← arg maxfi p(fi)

represent the state posterior associated with each candidate dynamics model, resulting in

a total of NK tracked particles. We present our algorithm in its entirety, called mean-cut

max-variance dynamic filtering (MCMV-DF), in Algorithm 4.

6.5.3 Explanatory Example

Figure 6.4 illustrates our approach with a stylized numerical example. We track a point

w ∈ R2 evolving purely along the horizontal axis according to a spring-like system, with

latent state v ∈ R4 representing velocity and acceleration in each dimension. We consider

K = 2 candidate dynamics models: the true dynamical system fh, and a similar system

fv that evolves purely along the vertical axis. We run MCMV-DF for M = 100 time steps

and observe the inferred state and dynamics model posteriors. As MCMV-DF converges

to correctly identify the true (horizontal) dynamical system fh at approximately t = 40

(as shown in (d) by the posterior probability p(fh|yt−1
0) approaching unity), the vertical

position estimate becomes more accurate. This is reflected in both the tight distribution

of probability mass around ŵv(t) in (a) and (c) and the closer to vertical orientation of the

hyperplanes corresponding to measurements y25 and y75 in (a). This vertical orientation

106

Figure 6.4: Stylized demonstration of MCMV-DF. (a) Posterior position distributions at three
time instants. Surface plots: state posterior p(wt|yt−1

0); red circles: particles representing
p(wt|yt−1

0 , fi) ∀ fi with opaqueness representing p(fi|yt−1
0); cyan target: true position wt;

yellow line: hyperplane corresponding to selected measurement (pt, qt). (b-c) True trajectory
and recovered marginal posterior p(wt|yt−1

0) for horizontal and vertical components of
position; shaded region corresponds to 95% confidence interval on posterior. (d) Posterior
over dynamics models p(fh|yt−1

0) and p(fv|yt−1
0).

maximizes variance after the trajectory has been identified as purely along the horizontal

axis. As the measurements begin to focus on accurately estimating the horizontal position,

the horizontal position estimates also become more accurate, as displayed in (b).

6.5.4 Numerical Experiments

In this section, we demonstrate the performance of MCMV-DF with simulations on synthetic

data, evaluating the effects of observation and innovation noise as well as the number

107

of candidate dynamical systems K on the accuracy of trajectory estimation and system

identification. In both experiments, we randomly generate an initial state x0 ∼ N (0, I) with

dimensionality d = l = 4 and compute its trajectory using eq. (6.10) and f with R = σ2I

for various settings of σ2. We generate 1500 landmark points, distributed in R4 asN (0, σ2
pI)

with σ2
p = 9, and use the downsampling rate β = 0.01 when selecting landmark points for

measurements.

In each trial, we generate K random linear dynamics models f1, . . . , fK by placing d+ l

eigenvalues in complex conjugate pairs on the unit circle (making the resulting systems

marginally stable) at angles distributed as θ ∼ U
[
π
6
, π

3

]
(controlling the velocity of the

resulting trajectories), with random orthogonal eigenvectors. We arbitrarily select one of the

K candidate dynamics models as the true system.

In Figure 6.5, we evaluate the accuracy of tracking and identification with four different

noise levels. To set the observation noise level, we vary the signal-to-noise constant k in

eq. (6.11): “low” observation noise corresponds to k = 10 (resulting in approximately 5%

incorrect comparisons), and “high” observation noise corresponds to k = 1 (resulting in

approximately 25% incorrect comparisons). The “low” and “high” values of innovation

noise are σ2 = 10−3 and σ2 = 10−2, respectively. Figure 6.5 shows the tracking error of the

entire state x, ‖xt − x̂t‖2, and posterior probability of the true dynamics model p(f |yt−1
0)

over a horizon of M = 40 time steps. We observe that MCMV-DF successfully identifies

the true dynamics system in a modest number of measurements and quickly achieves low

state estimation error. Increasing the observation and innovation noise reduces estimation

accuracy and increases the number of time steps required to identify the true dynamical

system, but our method still tracks the state and eventually recovers the correct dynamics

model.

In Figure 6.6, we evaluate the effect of the number of candidate dynamics models K

on MCMV-DF’s performance with fixed noise levels k = 3 (resulting in approximately

15% incorrect comparisons) and σ2 = 5 × 10−3. We observe that the higher complexity

108

Figure 6.5: Tracking performance as observation noise (“obs”) and innovation noise (“inn”)
levels change; each point shows the median over 200 trials. (a) Trajectory reconstruction
accuracy, shown as error ‖xt − x̂t‖2 at each time step. (b) Dynamical system identification,
shown as posterior probability of true system p(f |yt−1

0).

of the set of candidate systems F resulting from increasing K makes the problem harder,

reducing tracking accuracy and increasing the number of time steps required to identify the

true dynamical system; however, system recovery is still possible.

6.6 Discussion

Our simulations in Section 6.4 demonstrate that both InfoGain approximation methods,

EPMV and MCMV, significantly outperform the state-of-the-art techniques in active pref-

erence estimation in the context of low-dimensional item embeddings with noisy user

responses, and perform similarity to InfoGain, the method they were designed to approxi-

mate. This is true even when generating noise according to a different model than the one

used for Bayesian estimation. These empirical results support the theoretical connections

between EPMV, MCMV, and InfoGain presented in this study, and suggest that the posterior

volume reduction properties of EPMV may in fact allow for MSE reduction guarantees.

These results also highlight the attractiveness of MCMV, which proved to be a top

performer in embedding preference learning yet is computationally efficient and simple to

109

Figure 6.6: Tracking performance as the number of candidate dynamics models K increases;
each point shows the median over 200 trials. (a) Trajectory reconstruction accuracy, shown
as error ‖xt− x̂t‖2 at each time step. (b) Dynamical system identification, shown as posterior
probability of true system p(f |yt−1

0).

implement. This technique may also find utility as a subsampling strategy in supervised

learning settings with implicit pairwise feedback, such as in [164]. Furthermore, although

in this work pairs were drawn from a fixed embedding, MCMV is easily adaptable to

continuous item spaces that allow for generative construction of new items to compare. This

is possible in some applications, such as facial composite generation for criminal cases [168]

or in evaluating foods and beverages, where we might be able to generate nearly arbitrary

stimuli based on the ratios of ingredients [169].

Additionally, the results in Section 6.5.4 evaluating a dynamical systems problem

extension demonstrate MCMV-DF’s ability to successfully estimate the state trajectory from

intelligently selected paired comparisons and discern between multiple candidate dynamics

models. Further study is warranted to evaluate MCMV-DF’s performance in real-world

systems, including exploring the possibility of an uncountable set of candidate dynamical

systems F consisting of continuously parameterized dynamics models, which would enable

general system identification.

110

CHAPTER 7

FEEDBACK CODING FOR ACTIVE LEARNING

So far this in thesis, we have discussed several areas of overlap between IML and coding

theory, directly applied PM to a class of query selection problems in HCI, and broadly

applied tools in information theory to leverage IML query structures for the design of

computationally efficient approximations to information gain maximization. In this chapter,1

we synthesize these efforts by directly applying principles from PM for informative example

selection in general active learning problems, while utilizing specific query structures for

computationally efficient approximations. Specifically, the main contributions of this chapter

are a formulation of general active learning problems in terms of a feedback communications

system, a new PM-style coding scheme designed specifically for this framework, and a

demonstration of this approach through its application to active logistic regression. Although

there exists a large literature studying the intersection of information theory with machine

learning [17] and specifically active learning [170], there remain open questions about the

best ways to directly leverage techniques in channel coding for active example selection, as

we explore here.

To motivate this approach, we first examine active learning through the lens of feedback

channel coding by identifying communications system components, including a determinis-

tic encoder, noisy channel, channel input constraints, and capacity-achieving distribution.

With these components identified, we show how typical structural constraints in active learn-

ing problems prevent the direct application of existing feedback coding approaches such

as posterior matching [31]. We address this challenge by proposing Approximate Posterior

Matching (APM), an optimal transport-based active learning scheme that extends posterior

1This chapter is in collaboration with Dr. Matthieu Bloch and Dr. Christopher Rozell. CR and MB provided
project guidance. GC was the lead author of the associated publication in [6]. CR supervised the project.

111

matching to account for the type of encoder constraints found in active learning problems.

To demonstrate the power of this approach, we apply APM to Bayesian logistic regression,

a popular model in active learning. We identify the communication system components

in logistic regression, derive a corresponding APM selection scheme (APM-LR), provide

analytical results concerning each selected example’s information content, and empirically

demonstrate on several datasets how APM-LR attains a sample complexity comparable

to other active logistic regression methods at a reduced computational cost. While this

example scenario highlights the capabilities of APM as a specific data selection method, the

feedback communications framework we develop provides a unified approach for designing

and analyzing active learning systems in general.

7.1 Related Work

Bayesian active learning methods are intimately related to concepts in information and

coding theory, and the intersection between these topics has a long history rooted in the

study of sequential design of experiments [41, 42] and active hypothesis testing [38].

Since this early work, direct estimation and maximization of information gain has emerged

as a popular active learning method [20], and has been approximated for computational

tractability [171]. More recently, [170] have studied the direct application of an information-

theoretic active hypothesis testing method to active learning problems. This method is

limited to discriminating between a finite number of hypotheses (as opposed to estimating

arbitrary model parameters) and to our knowledge has not been applied to popular machine

learning models such as logistic regression. Other works have described at a high-level the

similarities between active learning and coding with feedback over a noisy channel but do

not exploit this observation to leverage existing coding schemes for example selection [19,

172].

Posterior matching [22, 31] has been applied to tasks beyond telecommunications such

as brain-computer interfacing [23, 50] and aircraft path planning [52], but has limited

112

application to example selection in active learning. [173] study an active learning algorithm

related to posterior matching that learns decision boundaries in discretized spaces, but does

not directly maximize information about hyperplane parameters in a continuous space as we

do here. More generally, to our knowledge existing work has not framed the task of active

learning as a feedback communications system for the purpose of identifying an equivalent

capacity-achieving distribution and selecting examples whose channel input distribution

most closely approximates it, as we do here.

Logistic regression is a popular setting for the study of active learning, and has served

as a testbed for the evaluation of competing example selection techniques. [174] surveyed

modern active learning methods for logistic regression and evaluated them on many datasets.

They generally found that uncertainty sampling and random sampling match or exceed

the performance of more sophisticated (and computationally intensive) example selection

methods. Uncertainty sampling, where examples closest to the estimated decision boundary

are selected for labeling, is arguably the most popular active learning method for linear

classification [175]. Other active learning methods for linear classifiers are discussed in the

literature related to learning halfspaces under bounded noise [176].

7.2 Active Learning as a Communications Model

Let U ⊆ Rd denote a pool of unlabeled examples from which at each training iteration

n ∈ N an example xn ∈ U is selected for labeling by an expert, who assigns label

Yn ∈ {1, 2, . . . K} according to a probabilistic model. We consider a Bayesian framework

in which we assume the existence of ground truth model parameters θ ∈ Θ distributed

according to a prior pθ that parameterizes a distribution p(Y | x, θ) governing the expert’s

labeling behavior. As is common in active learning, we assume that the labels {Yn} are

independent when conditioned on θ. At each iteration n, a learning algorithm A is trained

on a labeled dataset Ln = {(xi, yi)}ni=1 (using lowercase to denote previously observed

labels), resulting in a trained model with parameters θ̂n ∈ Θ. The task of active learning is

113

to design a policy πn that, at each iteration, uses the label history Ln−1 to select example xn

from the remaining unlabeled examples Un := U \ {xi}n−1
i=1 , such that the classifier trains a

generalizable model with as few labeled examples as possible.

In active logistic regression, θ encodes the weights of a linear separator, with Θ = Rd

(we consider only homogeneous logistic regression in this work). We assume a Gaussian

prior pθ ∼ N (0, 1
λ
I) with hyperparameter λ > 0. The label Y ∈ {−1, 1} for data example

x is assumed to be distributed according to

p(Y = 1 | x, θ) =
1

1 + e−xT θ
. (7.1)

Given a labeled dataset L, we consider a maximum a posteriori (MAP) learning algorithm

given by the convex program

A(L) = arg max
θ∈Rd

ln pθ
∏

(x,y)∈L

p(y | x, θ)

= arg min
θ∈Rd

λ

2
‖θ‖22 +

∑
(x,y)∈L

ln(1 + e−yx
T θ). (7.2)

Our key insight in this work is to define an intermediate variable L = hθ(x), where

hθ(x) := xT θ, and decompose the labeling distribution in eq. (7.1) into p(Y = 1 | x, θ) =

p(Y = 1 | L) = 1
1+e−L

. This decomposition of the labeling distribution into a deterministic

function hθ(x) and conditional distribution p(Y | L) can be found in many machine learning

models. For instance, in Bayesian neural networks [48], hθ(x) is typically given by the

composition of several nonlinear layers with L = hθ(x) encoding the final layer feature

vector, and p(Y | L) is given by the softmax function. Figure 7.1a depicts this decomposition

for logistic regression, and Figure 7.1b illustrates the full active learning decomposition in

the general case.

By decomposing active learning in this manner, we are able to draw direct connections to

feedback channel coding, in which a message θ is encoded into a sequence of symbols {Ln},

114

(a)

(b)

(c)

Figure 7.1: (a) Decomposition of logistic regression into an inner product between hyper-
plane θ and example xn, and a logistic label distribution that depends only on this product.
(b) Active learning decomposed into a deterministic function h, label distribution p(Y | L),
and feedback of the labeling history Ln−1 to example selection policy πn. (c) Coding with
feedback, where a message is transmitted across a noisy channel as a sequence of symbols
and subsequently decoded (copied from Figure 2.2). By comparing (b) and (c), one can
draw direct connections between active learning and coding with feedback.

transmitted across a channel with transition probability p(Y | L) yielding noisy output

symbols {Yn}, and subsequently decoded into an estimated message θ̂n. The availability of

noiseless feedback from the channel output to the encoder provides the encoder with the

history of received symbols, and allows it to adaptively select an informative channel input

(Figure 7.1c). By comparing Figures 7.1b and 7.1c, we can see the direct correspondence

between active learning and channel coding with feedback: model parameters θ serve as

the message, which is encoded by function h (parameterized by xn) into channel input

Ln = hθ(xn). Label distribution p(Y | L) can be interpreted as a noisy channel, with label

Yn as the channel output. Algorithm A decodes labeled data Ln into a decoded message θ̂n,

115

and Ln is passed as noiseless feedback to the encoder. This formulation of active learning as

a feedback communications system allows one to leverage existing tools in channel coding

for the design of an example selection scheme πn. While similar decompositions have been

observed in prior work [170, 19], we believe our work is the first to use this approach to

analyze active learning in a real-world setting such as logistic regression.

7.2.1 Optimal Feedback Coding

In devising a feedback coding scheme for selecting a sequence of channel inputs {Ln},

there are several quantities that characterize optimal performance. As a reminder, we

denote the mutual information I(L;Y) between random variables L and Y as a function of

marginal distribution pL and conditional distribution pY |L (using the notation pL and pY |L

interchangeably with p(L) and p(Y | L)) given by I(pL, pY |L):

I(pL, pY |L) :=

∫
L,Y

pL pY |L log2

pY |L
pY

,

where pY denotes the output distribution of channel pY |L with input distribution pL. Letting

yi := {y1, . . . yi} denote the history of observed channel outputs, at iteration n we seek

to maximize the information gain I(θ;Yn | yn−1), which measures the one-step decrease

in uncertainty about the message upon receiving each channel output. For deterministic

encoders, information gain is equal to I(Ln;Yn | yn−1) = I(pLn|yn−1 , pY |L) [27]. Note that

for a fixed channel pY |L, information gain is only a function of the channel input distribution

pLn|yn−1 , conditioned on the history of channel outputs.

As discussed in Chapter 2, a key quantity in channel coding is the channel capacity

C, defined as the maximum mutual information across the channel for any channel input

distribution pL within some class C:

p∗L(C) := arg max
pL∈C

I(pL, pY |L) C := I(p∗L, pY |L).

116

The capacity-achieving distribution p∗L(C) is the input distribution in C that maximizes

information across the channel. Through achievability and converse arguments, a central

result in information theory is that optimal coding schemes, when marginalized over the

message set, should induce the capacity-achieving distribution on the channel input [15]. In

working towards applying existing feedback coding schemes to active example selection,

we first characterize the capacity-achieving distribution for logistic regression, which is a

core contribution of our work and forms the basis of our novel active logistic regression

scheme in Section 7.3.

Channel Capacity in Logistic Regression. Letting f(`) := 1
1+e−`

, we observe from

Figure 7.1a that logistic regression has a binary output channel with transition probability

p(Y = 1 | L) = f(L). Without constraints on the channel input, the information gain can be

maximized by placing masses of equal weight at ±∞. However, logistic regression imposes

the structural constraint L = xT θ, so that such a distribution would require data points

of infinite energy for finite model weights. Therefore, to characterize logistic regression

capacity in practice, we consider the capacity-achieving distribution within the class of

power-constrained distributions given by CP := {pL : E[L2] ≤ P}; we discuss the selection

of P in Section 7.3. With this class defined, we have our first result.

Proposition 7.2.1 (Capacity of Logistic Regression). For p(Y = 1 | L) = f(L), we have

p∗L(CP) = B√P , where Bt is defined as Bt(`) := 1
2
δ(` − t) + 1

2
δ(` + t) and δ denotes the

Dirac delta function. Furthermore, we have C = I(B√P , f) = 1− hb(f(
√
P)), where hb

denotes the binary entropy function.

The proof follows closely to that of [177] for the one-bit quantized Gaussian channel;

the proofs of Proposition 7.2.1 and all subsequent results are presented in Section D.1.

117

7.2.2 Posterior Matching

By characterizing the channel capacity and capacity-achieving distribution of active learning

models, we enable the use of existing feedback coding schemes that achieve capacity.

Recently, a multidimensional extension of posterior matching has been developed to select a

sequence of channel inputs {Ln} to maximize the information gain across a given channel

pY |L. The central concept is to construct an encoder that by definition induces pLn|yn−1 = p∗L

for every n, which in essence hands the decoder the information that it is still “missing” [31].

This involves the construction of an encoder mapping Syn−1 : θ → L parameterized by yn−1

such that Syn−1(θ) ∼ p∗L for every n.

While posterior matching is an attractive feedback coding scheme, there are challenges

in applying it to active learning: given the structural constraints of any particular active

learning problem as depicted in Figure 7.1b, it may not always be the case that a mapping

from pθ|Ln−1 to p∗L exists, since the encoder is constrained to the set of mappings given by

{hθ(x) : x ∈ Un}.2 For example, in active logistic regression under mild assumptions, there

exists no x such that hθ(x) ∼ p∗L, as shown in the following proposition.

Proposition 7.2.2. Under a log-concave prior distribution pθ, in Bayesian logistic regression

for any n there exists no xn that induces pLn|Ln−1 ∼ p∗L.

Since we assume a Gaussian prior pθ (which is log-concave), Proposition 7.2.2 applies

and therefore there exists no active logistic regression scheme πn corresponding to a posterior

matching mapping from θ to p∗L. We suspect that the infeasibility of p∗L holds generally in

other real-world machine learning models (e.g., Bayesian neural networks) due to similar

structural constraints imposed by hθ(x), preventing the direct application of posterior

matching for example selection. In the next section, we extend concepts from posterior

matching to a novel active learning scheme compatible with this constrained encoder

structure.
2The analogous distribution to pLn|yn−1 in active learning is pLn|Ln−1

. When considering only determinis-
tic example selection schemes, pLn|Ln−1

is induced directly from pθ|Ln−1
, through hθ(x).

118

7.2.3 Approximate Posterior Matching

To address the impossibility of finding x ∈ U that induces p∗L on L, we introduce a

scheme that instead selects an example xn such that pL|Ln−1 is distributed “as close as

possible” to p∗L, as measured by a distance between distributions. Specifically, we use the

2-Wasserstein distance because of its convenient geometric properties and compatibility

with non-overlapping distribution supports [178]. The p-Wasserstein distance between

distributions µ and ν is given by

Wp(µ, ν) =

(
inf

γ∈Π(µ,ν)

∫
u

∫
v

|u− v|pγ(u, v)

) 1
p

,

where Π(µ, ν) is the set of couplings with marginal distributions µ and ν [179]. Our selection

scheme, called Approximate Posterior Matching (APM), is then given by

xn = πn(Ln−1) := arg min
x∈Un

W2(pLn|Ln−1 , p
∗
L). (7.3)

While APM is intuitively appealing because it steers the induced channel distribution as

close as possible to p∗L, we justify this strategy in the next section for the case of logistic

regression by showing that information gain does in fact approach its maximum possible

value as W2(pL|Ln−1 , p
∗
L) is minimized.

7.3 APM in Logistic Regression

Under the power constraint E[L2] ≤ P , Proposition 7.2.1 establishes that the capacity-

achieving distribution in the logistic regression system is given by B√P . We now show

an information continuity result for this capacity-achieving distribution, which provides a

mathematical justification for the APM Wasserstein distance minimization in eq. (7.3).

Theorem 7.3.1. Let C̃n = maxx∈Un I(pLn|Ln−1 , f) denote the maximum information gain

from any example selected at iteration n, and suppose P > 0 is selected such that pLn|Ln−1 ∈

119

CP for any x ∈ Un. Then for any x ∈ Un,

C̃n − I(pLn|Ln−1 , f) ≤ KPW2(pLn|Ln−1 , B
√
P),

where KP > 0 is a constant that only depends on P .

For decreasing W2(pL, B√P), this result bounds I(pLn|Ln−1 , f) towards its maximum

possible information gain C̃n. In other words, minimizing the distance to the known capacity-

achieving distribution (even if not achievable in practice) ensures that the information gain

approaches its maximum value within the set of possible input distributions — a value which

is unknown a priori. As we shall see in the results and experiments that follow, targeting the

known capacity-achieving distribution affords geometric simplifications and computational

benefits over the strategy of directly selecting the example that achieves C̃n. Unlike APM,

the latter method does not benefit from analytical knowledge of the information structure

of the channel and constraint set, and so it must instead conduct an expensive brute-force

maximization of information gain.

7.3.1 Closed-form Results

For logistic regression, the calculation of W2(pL, Bt) takes a convenient closed-form expres-

sion, which simplifies the example selection in eq. (7.3):

Proposition 7.3.2. For t > 0, with medpL(L) denoting the median of L according to

distribution pL,

W 2
2 (pL, Bt) = EpL [L2]− 2tEpL [|L−medpL(L)|] + t2.

We can simplify this expression even further when pL is normally distributed:

120

Corollary 7.3.1. For L ∼ N (µ, σ2),

W 2
2 (pL, Bt) = µ2 +

(
σ −

√
2

π
t

)2

+

(
1− 2

π

)
t2.

At iteration n, suppose that pθ|Ln−1 is approximated by N (µn,Σn), resulting in channel

input Ln = θTxn being distributed as N (µTnxn, x
T
nΣnxn). Although pθ|Ln−1 is not normally

distributed in logistic regression, it is common to make this approximation in practice [180].

By applying Corollary 7.3.1 and omitting constant terms, we derive our APM selection

policy for logistic regression with power constraint P .

Definition 7.3.1. Approximate Posterior Matching for Logistic Regression (APM-LR):

πn(Ln−1) = arg min
x∈Un

(µTnx)2 +

(√
xTΣnx−

√
2

π
P

)2

. (7.4)

This objective is a combination of two terms: the first term corresponds to minimizing the

distance between example x and the posterior mean hyperplane. If µn is taken as an estimate

of θ, this term corresponds to the well-known uncertainty sampling active learning method,

which samples points close to the current hyperplane estimate [175]. The second term prefers

examples that align with the direction of maximum posterior covariance. Specifically, for

xTΣnx <
2
π
P , the second term is a decreasing function of xTΣnx, encouraging x to align

with posterior covariance eigenvectors with large eigenvalues.

These two terms together can be interpreted as encouraging “exploitation” and “explo-

ration,” respectively: the first term encourages the selection of examples that are close to

the current estimate of θ, exploiting this estimate to only query examples whose labels

are ambiguous. The second term balances this exploitation by probing in directions of

the hyperplane posterior that have not yet been sufficiently explored, reducing uncertainty

about the hyperplane itself. Figure 7.2 visualizes this tradeoff in comparison to uncertainty

sampling, which only queries examples close to the current hyperplane estimate and does

not account for the fact that there may be directions of the hyperplane posterior that have

121

Labeled data pool Uncertainty utility: initial 50 Uncertainty queries Uncertainty utility: 50 queries

Hyperplane prior

(a)

APM-LR utility: initial

(b)

50 APM-LR queries

(c)

APM-LR utility: 50 queries

(d)

Figure 7.2: (a) Top: linearly separable dataset (optimal hyperplane is diagonal) demon-
strating the failure of uncertainty sampling (dataset adapted from [185]). Bottom: samples
from hyperplane posterior, given two seed labels. The black hyperplane and corresponding
normal vector depict the initial logistic regression solution, the cyan arrow indicates the
normal vector to the posterior mean hyperplane, and the purple arrow indicates the maximal
eigenvector of the posterior. (b) Utility function heatmap for uncertainty sampling (top) and
APM-LR (bottom) — the unlabeled example with the highest utility is selected for labeling.
Uncertainty sampling selects examples close to the current hyperplane, while APM-LR
selects examples that are both close to the posterior mean hyperplane and align with the
direction of largest posterior variance. (c-d) After 50 queries, uncertainty sampling (c-top)
has not selected samples in the dataset corners, leading to sampling bias and continued
sampling of the center clusters (d-top). Meanwhile, APM-LR (c-bottom) has sufficiently
explored the dataset, while continuing to sample examples in only the most ambiguous
regions (d-bottom).

not been sufficiently explored. This myopic behavior is an instance of sampling bias, a

well-known phenomenon in active learning where a policy continually selects examples

that reinforce the learner’s belief in an incorrect hypothesis [181, 182, 183]. The balance

of exploitation and exploration terms in APM-LR helps prevent this type of sampling bias,

in a spirit similar to other active learning methods that balance uncertainty reduction with

diverse example selection [184, 185].

An attractive computational feature of eq. (7.4) is that the posterior mean and covariance

can be estimated once at each selection iteration and then simply projected onto each

candidate example, resulting in a computational cost of only O(d2) per example evaluation.

122

Note that these computational advantages along with the natural balance between exploration

and exploitation in APM-LR emerged naturally from first-principles of feedback coding,

demonstrating the potential of identifying the capacity-achieving distribution and applying

APM as a universal means of designing geometrically intuitive, computationally efficient

active selection schemes.

7.4 Experimental Results

We evaluate the performance of APM-LR against baseline example selection methods for

logistic regression on a variety of datasets from different tasks, as measured by holdout test

accuracy and selection compute time. For each method, we follow [174] and set the regu-

larization parameter in eq. (7.2) to λ = 0.01, which we solve with the LIBLINEAR solver

[186]. After each example is labeled, we approximate pθ|Ln−1 with a normal distribution by

applying the variational approximation described in [187], which is solved in only a few

iterations of an expectation-maximization procedure (referred to here as “VariationalEM”).

The final component needed to apply APM-LR is the selection of power constraint P in

eq. (7.4).

Selecting Power Constraint Although our approach is rooted in feedback coding the-

ory, regarding the power constraint there are two key differences between our model and

traditional communications systems. First, unlike telecommunications systems that have

physical restrictions such as limited battery levels, in our framework there is no external

prescription of the power budget P and therefore we can select any valid upper bound on the

channel input power induced by the unlabeled examples. Secondly, unlike coding schemes

which globally maximize information gain over the entire trajectory of channel inputs, we

seek to myopically maximize the one-step information gain at every channel input. Since

the goal at each iteration is to separately solve a local information maximization problem,

there is no need for the power constraint P to be constant across iterations, and therefore we

123

Algorithm 5: Approximate Posterior Matching for Logistic Regression (APM-LR)
Input: data pool X , hyperparameter λ > 0, horizon N , initial training set L

1: µ← 0, Σ← 1
λ
I

2: B ← maxx∈U‖x‖2

3: U ← X
4: for n = 1 to N do
5: P ← B2λ1(Σ)

6: x∗ ← arg minx∈U(µTx)2 +
(√

xTΣx−
√

2
π
P
)2

7: y∗ ← ExpertLabel(x∗)
8: U ← U \ {x∗}, L ← L ∪ (x∗, y∗)
9: µ,Σ← VariationalEM(L)

10: θ∗ ← A(L) i.e., eq. (7.2)
11: end for
Output: hyperplane θ∗

set a separate power constraint Pn for each iteration.

Since the selection of Pn parameterizes the target distribution in APM-LR, it is important

for Pn to be set as tight as possible so that the target capacity-achieving distribution is well-

matched to the set of feasible channel input distributions. This is because at each iteration the

capacity-achieving distribution serves as a proxy for the optimal input distribution induced

by a real example, and a setting of Pn that is too loose will result in APM targeting a proxy

that is not well-matched to the feasible input distributions. To select a satisfactory setting of

Pn, we derive an upper bound on the channel input power to use as an implicit constraint.

Suppose for a given dataset that there exists a known B > 0 such that ‖x‖2 < B (this

is a reasonable assumption in many real-world settings). Let λ1(M) denote the largest

magnitude eigenvalue of matrix M . We then have (with expectations taken with respect to

pLn|Ln−1)

E[L2
n] = xT (µnµ

T
n + Σn)x ≤ B2λ1(µnµ

T
n + Σn).

For each n we can therefore set Pn = B2λ1(µnµ
T
n + Σn). In our experiments we select a

slightly modified parameter Pn = B2λ1(Σn), which we justify as a more practical heuristic

in Section D.2.1. We summarize APM-LR in full in Algorithm 5, including power constraint

calculation and variational posterior updating.

124

Datasets We follow previous work in active learning for logistic regression [185, 174]

and test each method on several UCI datasets [188] including vehicle, letter, austra, and

wdbc. We also evaluate performance on several synthetic datasets including the dataset

depicted in Figure 7.2 (adapted from [185]), which we refer to as cross (see Section D.2.2

for details on all datasets). For each simulation trial, we first randomly divide the dataset

into an equally-sized data pool (U) and held-out test set. We normalize U to zero-mean and

coordinate-wise unit-variance, and apply the same transformation to the test set. Before

evaluating each example selection method, the training dataset (L) is seeded to consist of

one randomly selected labeled example from each class.3

Baseline Methods We evaluate the following baseline methods, each described with their

computational cost per candidate example evaluation (see Section D.2.3 for details):

• Uncertainty: select closest example to current hyperplane estimate (i.e. arg minx∈Un x
T θ̂n−1)

at cost O(d). The action of Uncertainty sampling is comparable to that of the first term in

eq. (7.4).

• Random: each example is selected uniformly at random from Un, at O(1) cost.

• MaxVar: to isolate the effect of the second term in eq. (7.4), we evaluate a control

strategy that selects the example that induces the largest channel input variance (i.e.

arg maxx∈Un x
TΣnx), at cost O(d2).

• InfoGain: selects the example with the largest information gain I(θ;Yn | Ln−1), estimated

by sampling s times from the normally approximated hyperplane posterior (here we set

s = 100) and for each candidate example evaluating a Monte Carlo approximation of

information gain, at O(ds) cost.

• BALD: we approximate the logistic function f(`) with a probit function and apply the

probit regression active learning method of [171], at cost O(d2). Like APM-LR, BALD

3Our experiments are synchronized across data selection methods: each trial uses the same training/test
split and seed examples for each tested method.

125

(a) letterDP (b) austra (c) cross

Figure 7.3: Average test classification accuracy plotted against number of labeled examples
(error bars show ±1 standard error) across select UCI datasets (a-b) and the synthetic cross
dataset (c, with legend shared with a-b and omitted for visual clarity). Overall, APM-LR
performs comparably to other methods seeking to approximately maximize information
gain. While uncertainty sampling performs well on some datasets (a-b), it can fail in cases
where it suffers from sampling bias (c). Most of the tested active learning methods (except
the control, MaxVar) outperform random sampling. For visual clarity we show different
numbers of queried examples for each dataset.

approximates the action of InfoGain and only requires the mean and covariance of the

normally approximated hyperplane posterior.

InfoGain is the most computationally intensive selection method, since it requires a brute-

force Monte Carlo approximation of information gain for each candidate example. BALD

and APM-LR have the next least expensive cost per example at O(d2), followed by Uncer-

tainty and Random sampling.

Performance Comparison In Figure 7.3, we compare the learning performance of each

data selection method by plotting holdout test accuracy against number of queried examples

(excluding the seed set) across select datasets (see Section D.2.4 for full results). We

generally find that the tested active data selection methods outperform random sampling.

The exception is MaxVar, which performs comparably to random selection and worse than

APM-LR. Although simple Uncertainty sampling matches the performance of other active

methods on several datasets (Figure 7.3a-b) as previously observed by [174], in additional

tests on synthetic datasets we find that APM-LR outperforms uncertainty sampling. This

is the case for the cross dataset (Figure 7.3c), demonstrating how Uncertainty sampling

can be susceptible to sampling bias that leads to insufficient exploration (see Section D.2.6

126

Table 7.1: Comparison of median cumulative time (s) for each method to select the first 40
examples (excluding seed points and time for model retraining). Generally, APM-LR has a
cost an order of magnitude lower than InfoGain and BALD (which directly approximate the
action of information maximization), while Uncertainty, MaxVar, and Random sampling
have the cheapest cost.

letterDP austra cross
APM-LR 0.336 0.150 0.125

Uncertainty 0.149 0.063 0.053
BALD 4.230 1.770 1.521

InfoGain 12.755 5.089 2.722
Random 0.005 0.003 0.002
MaxVar 0.118 0.050 0.040

for additional failure mode analysis). These tests together lend evidence to the mixture of

terms in eq. (7.4) having combined benefits over pure exploration of directions with large

posterior variance or pure exploitation of ambiguous examples with respect to the current

hyperplane estimate. Finally, APM-LR generally performs similarly to InfoGain and BALD,

both of which directly approximate the action of information gain maximization, in contrast

to APM’s geometric, indirect approach.

Table 7.1 depicts the computational cost for each method across select datasets (see

Section D.2.5 for full results and expanded timing evaluations). Similar to the analysis

in [174], for each method we evaluate the cumulative compute time to select the first

40 examples (excluding seed examples and time for model retraining), and compute the

median time over all trials. We see that InfoGain is the most expensive of all methods,

since it directly approximates information gain with Monte Carlo sampling. BALD has the

next highest cost, followed by APM-LR — the two latter methods only require a single

computation of posterior mean and variance, which can be projected onto each candidate

example. Uncertainty sampling and random sampling have the lowest computational cost.

Although BALD can also be computed using only the posterior mean and covariance,

it is unclear how the approximation in BALD can be applied beyond probit regression. In

contrast, the APM formulation in eq. (7.3) can be applied generally to any active learning

problem that can be decomposed into a deterministic encoder and noisy channel, along with

127

a known capacity-achieving distribution. The combined results of Figure 7.3 and Table 7.1

suggest that the universal APM approach of leveraging this analytical knowledge of the

capacity-achieving distribution affords a geometric active selection approach that performs

well in terms of both sample and computational complexity.

7.5 Discussion

To our knowledge, our work is the first effort to both reframe active learning as a feedback

communications system and utilize analytical knowledge of the corresponding capacity-

achieving distribution to derive an active learning scheme. The analytical and empirical

results in this work for the special case of logistic regression demonstrate the potential of this

coding-based active learning approach: information continuity results show how examples

selected with APM-LR have information gain approaching their maximum possible value,

APM-LR has a convenient geometrical formulation resulting from analytical knowledge

of the capacity-achieving distribution for logistic regression (characterized here for the

first time) that can lead to computationally efficient example selection, and when tested

on multiple datasets APM-LR performs comparably to baseline active learning methods

including brute-force information maximization. APM-LR’s attractive balance between

exploration and exploitation emerged naturally from first-principles of channel coding,

extending beyond the common approach of uncertainty sampling.

More generally, a fundamental feature of Approximate Posterior Matching is that an-

alytical knowledge of the capacity-achieving distribution converts the usually unwieldy

information maximization problem in active learning to a geometric problem. In logistic

regression, this geometry led to computational advantages over direct information maxi-

mization, and we conjecture that similar benefits may emerge in more complex settings.

Additionally, as we discuss further in Chapter 8 the general formulation of APM in eq. (7.3)

presents several opportunities to leverage existing computational algorithms to aid example

selection, including estimating p∗L when it is analytically unknown [189, 190] and optimiz-

128

ing Wasserstein distances with state-of-the-art methods [191]. Overall, we believe that our

coding-theoretic approach opens several new directions for future work in active learning.

129

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

As we demonstrate in this thesis, interactive machine learning as a field of study shares many

similarities and areas of overlap with feedback communications: the expert’s knowledge can

be abstracted as a message to be communicated iteratively to a learner through a sequence

of intelligently selected interactions that encode this knowledge. When IML is directly

framed as a feedback coding problem using the language and tools of information theory,

it becomes clear which system structures and mathematical quantities are important for

designing and measuring the performance of efficient (both in terms of computational and

sample complexity) interaction selection strategies. In this thesis, we make strides in this

direction by utilizing tools and concepts from feedback coding theory to identify and model

query structures in IML and develop direct information maximization solutions as well as

approximations that allow for computationally efficient query selection. The contributions

of this thesis progress in three parts from directly deploying a feedback coding scheme

for interaction design in HCI systems to formulating active learning in a feedback coding

paradigm for the design of a general example selection strategy through first principles of

coding theory.

• Chapters 3 and 4 explore the problem of information maximization in human-computer

interaction as a step towards studying information maximization in general IML

problems. We consider a broad class of HCI systems where the expert interacts with

an effector through noisy one-bit interactions. We adopt one-dimensional posterior

matching as an interaction algorithm by mathematically modeling the human expert

as a comparator whose output is passed through a binary symmetric channel. In

practice, posterior matching in this context distills to an efficient, robust, and easy-

to-use interaction policy where at each iteration the human issues refinements to

130

the effector by comparing their desired effector behavior to a guess that bisects

the set of remaining candidate behaviors. To accomplish this, in each setting we

create a dictionary of effector behaviors with a human-interpretable ordering rule

for sorting any two behaviors in the dictionary. We demonstrate the success of

this approach on both robot swarm control using a brain-computer interface and

segmenting objects in images. These two chapters demonstrate the potential for direct

solutions to information maximization by explicitly deploying an existing feedback

coding scheme.

• Chapters 5 and 6 explore how query structure can be leveraged for computationally

efficient approximations to information maximization in interactive similarity and

preference learning. Unlike the comparator model in Chapters 3 and 4 and its natural

connection to posterior matching, the query structures in these tasks do not lend

themselves to clear application of an existing feedback coding scheme for example

selection. However, the query structures in these problems along with tools in in-

formation theory can still be utilized to devise computationally efficient information

maximization strategies. In similarity learning, a set of basic assumptions on the

query model allows us to devise a Monte Carlo sampling scheme to approximate

the information gain of any candidate ranking query. In preference learning, we

leverage the query geometry of paired comparisons with a logistic noise model to

devise two simple, geometrically appealing strategies that approximate the action of

information gain maximization while having a computationally cheaper acquisition

function. We show in both similarity and preference learning how taking advantage of

query structure can lead to simplifying approximations that outperform (both in terms

of computational and sample complexity) baseline methods.

• Chapter 7 addresses the challenge encountered in Chapters 5 and 6 of being able

to identify useful query structures to design interaction policies, but lacking a solu-

131

tion that directly leverages existing algorithms in feedback coding as in Chapters 3

and 4. In this chapter, we introduce a general coding-theoretic solution to example

selection by framing active learning as a communications system and identifying

the corresponding encoder, channel, decoder, and feedback components. Specifi-

cally, we identify a fixed, deterministic function and conditional label distribution as

the critical components involved in translating active learning problems to coding

problems. By identifying these components, we can then characterize the equivalent

capacity-achieving distribution in active learning, which we present for the first time

for logistic regression. With capacity characterized, we discuss the challenges in

applying multidimensional posterior matching for example selection, and instead

propose the Approximate Posterior Matching selection algorithm which mimics the

action of posterior matching for use with the type of encoder constraints typically

encountered in machine learning. We then explore APM in the case of logistic re-

gression, and show how the resulting acquisition function elegantly balances between

data space exploration and uncertainty exploitation, while taking a convenient com-

putational form that is cheaper to evaluate than existing information maximization

methods while performing comparably on various datasets. This chapter serves as

a culmination of the work in this thesis by formulating general active learning as a

coding problem and proposing a universal coding-theoretic approach to the design of

active learning policies, even in the face of structural encoder constraints.

While information gain maximization in interactive learning has a long history and is a

popular approach used by many methods, the work in this thesis shows how existing models

and tools in information theory can be applied to derive general interaction policies from

first principles of coding theory by identifying and capitalizing on query structures found in

each problem. Identifying such structures and applying existing or modifications of existing

feedback coding schemes is an exciting and fruitful endeavor, since coding and information

theory are mature fields that offer many untapped avenues for future work at the intersection

132

with interactive machine learning. As we demonstrate in this thesis, directly exploiting this

intersection for the design of IML query selection strategies is a powerful and rewarding

approach that offers new perspectives on IML theory and algorithm development.

Using the coding-theoretic frameworks presented in this thesis as a starting point, there

are several immediate areas of future work that could potentially offer new insights into IML.

Although the work in this thesis is focused on channel coding, it would be interesting to apply

tools from joint source-channel coding [192], which is a more general and possibly more

appropriate lens through which to study IML. Since the seminal work of posterior matching

in [22], there have been advancements in the study of feedback coding in additional settings

such as coding with noisy feedback [193] and coding over channels with memory [194];

such extensions may inspire query selection strategies in IML problems involving similar

structures. In IML problems with one-bit query structures such as pairwise search and

logistic regression, there are connections to be explored in the information theory literature

on one-bit quantization with variable thresholds, where one-bit information maximization

has been studied in depth [177, 195, 196]. As an outlook on possible extensions to the

coding-theoretic concepts and algorithms for IML presented in this thesis, we conclude with

a brief discussion of specific ongoing and future work.

Information-theoretic Sequential Machine Teaching Although the problems explored

in this thesis can all be translated to an active learning formulation — where the learner

has full agency in selecting queries — it would be interesting to explore the application of

feedback information and coding-theoretic tools to sequential machine teaching, where the

expert (or teacher) has agency in selecting examples for labeling. Observing Figure 7.1b,

it is straightforward to modify this active learning coding framework to accommodate the

machine teaching problem by making the ground truth parameters available to the example

selection policy πn, as diagrammed in Figure 8.1. This formulation is in fact a generalization

of the framework in Figure 7.1b, since any machine teaching selection policy that does not

133

Figure 8.1: Sequential machine teaching as a communications system with feedback

utilize θ simply specializes to the active learning framework.

While the differences between Figure 7.1b and Figure 8.1 are subtle, in the case of

machine teaching there are two information pathways between the ground truth parameters

and the learner: information is encoded through not only the labels of examples, but also

through the example features themselves. For instance, in the one-dimensional machine

teaching example from Figure 1.1c, the locations of two oppositely labeled data points

directly encode the value of the ground truth threshold to the learner, since these points

were selected by the expert to be bisected by the threshold. This intuition of collective

information encoding between labels and features can be formalized by considering the full

information gain (conditioned on the labeled history) that the labeled example at iteration n

provides to the learner about the ground truth parameters, and by applying the chain rule of

mutual information:

I(Xn, Yn; θ | Ln−1) = I(Xn; θ | Ln−1) + I(Yn; θ | Xn,Ln−1). (8.1)

The first term on the right-hand side of eq. (8.1) is the information gain that the selected

example itself provides about the ground truth parameters, and the second term is the

information gain provided by that example’s label. In active learning, the first term is null

since knowledge of an unlabeled example cannot provide information to the learner about

the ground truth parameters, since it was the learner who selected this example initially.

In essence, the two terms in eq. (8.1) correspond to two channels between the ground

134

truth parameters and the learner. This formulation presents several exciting avenues for

both practical and theoretical future work at the intersection of coding theory and machine

teaching. In the case of human teachers, in the spirit of Chapters 3 and 4 there is an open

question of how to translate mathematical concepts in feedback coding to human decision-

making in this setting. One approach is to consider human-interpretable query types where

the human teacher at iteration n selects an example to label from some fixed set Sn of Nx

examples, along with a teaching instruction such as “Label the example from set Sn whose

label you feel most confident about.” We can model the human’s response to such a query

based on their knowledge of parameters θ.

For instance, in the case of a human’s classification behavior being adequately mod-

eled by a linear classifier, notions of confidence can arguably be translated to distance

relationships between examples and the underlying hyperplane parameterized by θ, since

by assumption the human provides ambiguous labels near the hyperplane boundary, and

more consistent labels for examples further away. Since the human’s response may have an

element of randomness (due to inconsistent answers or inadequate feature or model complex-

ity), we can devise a discrete choice model [197] to capture the teacher’s behavior, which

we model as being governed by a probability distribution p(x | Sn, θ). Such a probability

model for the teacher’s behavior can be interpreted as a transition probability for a discrete

memoryless example selection channel with input and output alphabets of size Nx.

Therefore, an informative machine teaching policy should populate the set Sn with

examples that simultaneously maximize the information gained through the selection of

the example itself (i.e., I(Xn; θ | Ln−1)) and the information gained from the label of the

example that is actually selected by the teacher (i.e., I(Yn; θ | Xn,Ln−1)). While the human

teacher is ultimately the one who selects the example Xn for labeling, computational and

theoretical tools from information and coding theory could potentially be used to choose

the example set Sn by solving a simultaneous information maximization problem over two

channels given by p(x | Sn, θ) and p(Y | L).

135

In such an investigation, it would also be important to theoretically characterize the

excess information gain provided by machine teaching over the most informative active

learning policy in the same problem setting. Formally, we are interested in the sign of the

difference

sup
πn

I(Xn, Yn; θ | Ln−1)− sup
πn

I(Yn; θ | Xn,Ln−1), (8.2)

where the first term represents the maximum one-step information gain achievable under

any machine teaching policy, and the second term is the maximum information gain possible

under any active learning policy (which only maximizes information with respect to the

label channel). Since any machine teaching policy can choose to ignore knowledge of θ

during example selection (setting I(Xn; θ | Ln−1) = 0), the difference in eq. (8.2) is trivially

greater than or equal to zero. The interesting question then is if there exist problem settings

where the difference in eq. (8.2) can be shown to be strictly greater than zero, which would

theoretically highlight the benefits of machine teaching over active learning.

Approximate Posterior Matching with Unknown Capacity In Chapter 7, we showed

how analytical knowledge of the equivalent capacity-achieving distribution of an active

learning problem could be used in APM to transform the information maximization problem

of example selection to a geometric problem, which potentially offers algorithmic and

computational advantages over brute-force information maximization. A critical requirement

of this process is that the target capacity-achieving distribution is well-matched to the set

of feasible input distributions induced by real examples. In the case of logistic regression,

we ensured a close match between the target distribution and the feasible set by deriving

a power constraint on the channel input based on the problem geometry, and using this

constraint to derive a corresponding capacity-achieving distribution. However, for general

IML problems it is unclear if there exist similar geometric constraints that could be applied to

make the problem of determining an approximately feasible capacity-achieving distribution

well-posed. Even if channel input constraints such as a power constraint could be derived

136

and imposed from the problem geometry, it is difficult in the general case to arrive at an

analytical expression for a capacity-achieving distribution.

One interesting and exciting avenue to apply APM in general cases where an analytical

characterization of an approximately feasible capacity-achieving distribution is unavailable

is to solve for an appropriate target distribution using computational methods. Specifically,

our approach is to solve for a capacity-achieving distribution iteratively in the spirit of Blahut-

Arimoto algorithms [189, 190], while ensuring that the resulting target distribution remains

within the realm of feasible distributions by applying an optimal transport regularizer. To

briefly introduce these ideas, we restate the information maximization problem introduced

in Chapter 7. For simplicity, we omit the label history Ln−1 from our notation, as well

as the index n of the selected example in the current iteration. We let phθ(x) denote the

distribution of random variable θ transformed through mapping hθ(x) parameterized by a

fixed example x. The information maximization problem for label distribution pY |L selects

the next example as

x∗ = arg max
x∈U

I(phθ(x), pY |L). (8.3)

Letting H(U) := {phθ(x) : x ∈ U} denote the set of feasible channel input distributions, we

can rewrite eq. (8.3) as an equivalent problem in terms of the most informative distribution

within H(U):

p∗L = arg max
pL∈H(U)

I(pL, pY |L). (8.4)

This information maximizing distribution within feasible set H(U) is in a sense the “ideal”

target distribution for APM, since it maximizes information across the channel (i.e., is

capacity-achieving) while remaining feasible since it is induced by an actual example.

To apply computational methods to solve for an approximation to p∗L, we can relax

eq. (8.4) using optimal transport. Noting that the 2-Wasserstein distanceW2(pL, qL) between

distributions pL and qL is zero if and only if pL = qL, we can rewrite eq. (8.4) as an equivalent

137

program by introducing an intermediate distribution qL:

p∗L = arg max
pL

I(pL, pY |L)

s.t. min
qL∈H(U)

W 2
2 (pL, qL) = 0.

The constraint minqL∈H(U) W
2
2 (pL, qL) = 0 implicitly ensures that pL ∈ H(U). By rewrit-

ing this constraint in a Lagrangian with hyperparameter λ > 0 and negating to a minimiza-

tion, we can solve the unconstrained problem

p∗L = arg min
pL

[
−I(pL, pY |L) + λ min

qL∈H(U)
W 2

2 (pL, qL)

]
. (8.5)

At first glance, it might be unclear why the search for an APM target distribution in

eq. (8.5) is more computationally attractive than brute-force information maximization over

the pool of examples U . The key insight is that in the context of eq. (8.5), optimizing

over the examples in U (through the constraint qL ∈ H(U)) serves as a optimal transport

regularizer to keep pL — which is being optimized to maximize the information gain term

I(pL, pY |L) — “close” to the set of feasible distributions H(U) induced by real examples.

With this interpretation in mind, it may be possible that only a few landmark examples

Û ⊂ U are needed for this regularization, and qL can be optimized within a smaller set of

distributions H(Û):

p∗L = arg min
pL

[
−I(pL, pY |L) + λ min

qL∈H(Û)
W 2

2 (pL, qL)

]
. (8.6)

Once eq. (8.6) is solved numerically with a combination of Blahut-Arimoto algorithms

and modern methods in computational optimal transport [198, 199], p∗L can then be used

as a target distribution in APM against which the entire example pool is evaluated. This

process invests initial computation (before evaluating specific examples in U) in estimating

an informative, approximately feasible target distribution p∗L, a process which may only

138

require a small number of landmark data points Û for regularization. Then, once this

target distribution p∗L is solved for, it can be used as a “template” against which individual

examples x ∈ U are evaluated with an optimal transport cost according to APM. Specifically,

APM searches the entire pool U for the example x that minimizes W2(ph(x), p
∗
L), which

as in APM-LR may be more computationally tractable than brute-force maximization of

information gain over U .

More generally, the decoupling of information maximization in eq. (8.6) from the

task of evaluating all candidate examples in a pool makes strides in addressing a critical

computational challenge in pool-based active learning of evaluating an expensive acquisition

function over many candidate examples. This decoupling of information maximization from

a pool-based search and conversion of the pool-based search component to a geometric

optimal transport problem can potentially allow for more computationally efficient pool-

based active learning. These insights and algorithmic ideas are fundamentally motivated

and enabled by the coding-theoretic concepts presented in this thesis, further illustrating the

benefits of directly exploring the intersections of coding theory with interactive machine

learning.

139

Appendices

APPENDIX A

METHODS AND SUPPLEMENTARY DETAILS FOR ONE-BIT

HUMAN-COMPUTER INTERACTION

A.1 Modified Burnashev-Zigangirov Algorithm

This appendix chapter is mostly dedicated to methods and supplemental material for Chap-

ter 3. However, we first begin with a description of the Burnashev-Zigangirov (BZ) algorithm,

which is the core backend algorithm used in both Chapters 3 and 4. To maintain context, we

describe the algorithm in its application to Chapter 3, and conclude its presentation with a

discussion of its application to Chapter 4.

In this section, our notation and conventions for dictionary construction are inspired

from Omar et al. [23], and the mathematical algorithm is drawn from Castro and Nowak

[35]. Let zj = {σhj , σvj , σnj , σsj} denote the jth swarm configuration in the dictionary,

where σhj , σ
v
j , σ

n
j , and σsj respectively denote character indices in the horizontal position

(h), vertical position (v), number of sides (n), and size (s) alphabets. Letting Na denote the

number of characters in alphabet a ∈ {h, v, n, s}, we have σaj ∈ 1, 2, . . . Na with alphabet

precedence corresponding to character index ordering, i.e., character σaj precedes character

σak in alphabet a if and only if σaj < σak . Letting Nd = NhNvNsNs denote the total number

of strings in the dictionary, string zj precedes string zk in the total dictionary ordering if

and only if j < k, where j, k ∈ 1, 2, . . . Nd. Equivalently, zj precedes zk if and only if

σa
∗
j < σa

∗

k , where a∗ is the first character position where zj and zk differ.

With this dictionary notation established, let Zj =
σhj −1

Nh
+

σvj−1

NhNv
+

σnj −1

NhNvNs
+

σsj−1

NhNvNsNs
=

(j − 1)/Nd denote a real number representation of the jth dictionary string; it is straight-

forward to show that Zj ∈ [0, 1) and that string zj precedes zk if and only if Zj < Zk.

Each Zj corresponds to the start of a 1/Nd length interval, creating a mapping between

141

the configuration dictionary and equally sized intervals that uniformly partition [0, 1). In

particular, Zj ∈ {0, 1/Nd, 2/Nd, . . . 1− 1/Nd}, each corresponding to the start of interval

Ij = [(j − 1)/Nd, j/Nd) with length 1/Nd.

With this notation and real number mapping defined, posterior matching can be used as

an interaction algorithm to convey the user’s desired configuration. While we use the term

“posterior matching” here to remain consistent with previous feedback information-theoretic

BCI literature [23], the mathematical algorithm we use in this work is a discrete variation of

posterior matching known as the Burnashev-Zigangirov (BZ) algorithm [35, 38]. We use

this variation since our swarm dictionary is discrete and finite, and therefore our message set

corresponds to a finite partition of the unit interval rather than spanning the entire interval.

Still, in this work we refer to the BZ algorithm interchangeably with “posterior matching”

since the differences between the two algorithms are minor.

The BZ algorithm searches for one of Nd, length 1/Nd intervals on the unit interval by

taking adaptive one-bit measurements of points on the set {0, 1/Nd, . . . 1 − 1/Nd, 1} and

updating a probability distribution over interval set {Ij}. We adapt this algorithm to search-

ing over a finite, discrete dictionary by utilizing the mapping described above between each

string and a subinterval Ij , and “measuring” configurations Zj ∈ {0, 1/Nd, 2/Nd, . . . 1 −

1/Nd} by presenting the corresponding configuration as a swarm behavior to the user. Math-

ematically speaking, the user indicates if their configuration’s real number representation is

less or greater than the guess’s real number value. Unlike the BZ algorithm formulation,

in our setting there exists no measurement Zj = 1; we address this point below. While

the original BZ algorithm tracks a probability distribution over intervals, for clarity in our

adaption below we describe the posterior distribution over configurations directly, rather

than the intervals they correspond to.

Initialization Let the jth swarm string in the dictionary for 1 ≤ j ≤ Nd have a posterior

probability after k user inputs given by αj(k) ∈ [0, 1], corresponding to a probability

142

distribution over the set of intervals {Ij}. We initialize this probability distribution with a

uniform prior, with αj(0) = 1
Nd

.

Guess selection After k user inputs, define the posterior median N(k) ∈ {1 . . . Nd} as the

dictionary index such that

N(k)−1∑
j=1

αj(k) < 1/2,

N(k)∑
j=1

αj(k) ≥ 1/2. (A.1)

Denoting the swarm guess after k inputs as ẑ(k), we set ẑ(k) to be an adjusted version of

this median string. Specifically, let

ν1(k) =

Nd∑
j=N(k)

αj(k)−
N(k)−1∑
j=1

αj(k)

and

ν2(k) =

N(k)∑
j=1

αj(k)−
Nd∑

j=N(k)+1

αj(k).

The adjusted median configuration index, denoted n(k), is set to N(k) with probability

π1(k) = ν2(k)/(ν1(k) + ν2(k)), or N(k) + 1 with probability π2(k) = 1− π1(k). The

swarm configuration is then updated as ẑ(k) = zn(k). For the edge case of N(k) = Nd, we

set n(k) = Nd with probability 1. This adjustment is due to the fact that, unlike the original

BZ algorithm, there is no measurement at ZNd+1 = 1 available.

Noisy user input The algorithm receives Yk+1 = BSC(Xk+1, p) from the user, i.e.,

the output of a binary symmetric channel (Yk+1 ∈ {0, 1}) with crossover probability

0 ≤ p < 1/2, where Xk+1 is issued as a left-hand motor imagery input (Xk+1 = 0) if the

target precedes the guess zn(k), or a right-hand motor imagery input (Xk+1 = 1) if the target

succeeds or equals the guess. Mathematically, if zt is the target configuration with real

number representation Zt, then Xk+1 = 0 if Zt < Zn(k), and Xk=1 = 1 if Zt ≥ Zn(k).

143

Update posterior Let q = 1− p, and define

ν =

n(k)−1∑
j=1

αj(k)−
Nd∑

j=n(k)

αj(k). (A.2)

If j < n(k), then

αj(k + 1) =

2q

1+ν(q−p)αj(k) Yk+1 = 0

2p
1−ν(q−p)αj(k) Yk+1 = 1

. (A.3)

Otherwise, if j ≥ n(k) then

αj(k + 1) =

2p

1+ν(q−p)αj(k) Yk+1 = 0

2q
1−ν(q−p)αj(k) Yk+1 = 1

. (A.4)

Algorithm notes As discussed in Section A.2, we can opt to run the BZ algorithm with

a stopping criterion. To do so, a priori the BCI user must choose a threshold parameter

τ ∈ [0, 1] which corresponds to a convergence confidence threshold. Noting that αj(k) is

the posterior probability after k inputs of swarm configuration j being the user’s desired

configuration, the algorithm halts at the first instance of αj(k) ≥ τ for any j, k. Let j∗ denote

the configuration whose posterior probability crosses the threshold, and k∗ be the number of

user inputs received at this point. We say that the algorithm “converges” to swarm j∗ after

k∗ user inputs, and j∗ is selected as the final estimate of the user’s configuration. Note that

1− aj∗(k∗) is the posterior probability of the ground truth target being a configuration other

than j∗ — in other words, the probability of a configuration convergence error. Therefore,

1− τ can be interpreted as a maximum error tolerance for convergence, or conversely τ is a

threshold for minimum convergence accuracy.

When simulating posterior matching, for simplicity the simulation can operate directly

on the unit interval, rather than needing to maintain and operate on the full set of characters

{σh, σv, σn, σs} for each dictionary string. Instead, we can simply track the posterior

144

distribution αj(k) over the dictionary strings directly, and simulate user responses by

comparing the real number representations of the current guess Zn(k) and the target Zt. Note

that once the dictionary size Nd is specified, such a simulation can be run without explicit

knowledge of the characters that each string corresponds to, alphabets, alphabet sizes, or

number of degrees of freedom. This is because the total order between configurations is

fully captured by their representations Zj on the unit interval, obviating the need to make

comparisons between specific characters. Such comparisons are only relevant when a human

user issues commands, since the dictionary representation is crucial for a human to be able

to sort according to the total ordering. However, when running simulations on a computer

we can forgo this step and operate directly on the unit interval.

A.1.1 Application to Interactive Object Segmentation

We can apply the BZ algorithm to interactive object segmentation by applying the algorithm

in Section A.1 to the ellipse dictionary in EllipseLex. Listed in order of precedence, the

EllipseLex alphabets correspond to each ellipse’s vertical position (denoted y, with my

alphabet characters), horizontal position (denoted x, with mx alphabet characters), angle

from the horizon (denoted θ, with mθ alphabet characters), half-length of the major axis

(denoted a, with ma alphabet characters), and aspect ratio of the minor axis to major axis

(denoted r, with mr alphabet characters). In the notation of Section A.1, an ellipse string is

then denoted as zj = {σyj , σxj , σθj , σaj , σrj}, where j ∈ 1, 2, . . . Nd andNd = mymxmθmamr.

At iteration k, ellipse ẑ(k) is presented to the user as feedback. We empirically observed

that as k increases and ẑ(k) converges to the target zj∗ , where j∗ indexes the index of the

target ellipse, ẑ(k) may oscillate between zj∗ and ellipse zj∗+1 due to the random selection

of n(k) as N(k) or N(k) + 1. For an ellipse dictionary with a fine enough resolution, this

oscillatory behavior does not result in dramatic changes in F1 score. However, for cases

where j∗ mod mr = 0, this oscillation results in an overflow of the minor-to-major axis

ratio r such that the F1 score may oscillate dramatically, even with increasing numbers of

145

inputs.

To resolve this oscillatory issue, note that it only occurs when N(k) = j∗; in this case,

the algorithm should generate zN(k) as a segmentation output, even if n(k) is selected as

N(k) + 1. The user continues to observe zn(k) as feedback, even though the algorithm

outputs zN(k) as a generated segment. This discrepancy between the ellipse delivered as

feedback and the ellipse used to generate a segment for F1 score calculation is no cause for

concern, since such a mismatch only occurs when the user’s target ellipse is, in fact, the latter.

To make this adjustment precise, continue to let ẑ(k) denote the ellipse presented as feedback

to the user at time step k, and define zo(k) as the ellipse selected as the segmentation output

and used for F1 score calculation at step k.

If N(k) mod mr = 0, then

ẑ(k) = zn(k)

zo(k) = zN(k).

Otherwise, if N(k) mod mr 6= 0, then

ẑ(k) = zo(k) = zn(k).

A.2 Brain-computer Interfacing Methods

Protocols for both the online user study (Protocol H16266) and robot control portions

(Protocol H10263) were approved by the Georgia Tech Institutional Review Board. Both

studies complied with ethical regulations set by the Review Board, including online user

study participants providing informed consent. GC consents to his image being published.

Unless otherwise noted, all software is written and executed in MATLAB.

146

Dictionary construction We constructed the swarm dictionary with the following char-

acters in each configuration string, in order of character precedence: horizontal position,

vertical position, number of sides, and size. Horizontal position and vertical position refer to

the coordinates of the center of each polygon, respectively (see Supplementary Figure A.1).

Size refers to the distance between the polygon center and each vertex (this value is the

same for each vertex since the polygons are regular). The number of characters in each

alphabet is as follows: 5 horizontal positions; 2 vertical positions; 3 numbers of sides; and

2 polygon sizes. Characters in the horizontal position alphabet were chosen to uniformly

span the robot arena (virtual or physical), as were the characters in the vertical position

alphabet. The “number of sides” alphabet has characters given by 3, 4, or 5 sides, with the

polygon rotation set by fixing a vertex at the “12 o’clock” position of each shape. The two

size distances were tuned such that size differences were visually discernible, while not

causing robots to overflow outside the span of the arena. With an arena of width 1.5 and

height 1 (specified in units relative to the arena height), these specifications translate to the

following alphabet characters: horizontal position {0.4, 0.575, 0.75, 0.925, 1.10}; vertical

position {0.4, 0.6}; number of sides {3, 4, 5}; size {0.3, 0.4}. These values (except for

number of sides) are specified in abstract units relative to the arena height, and are scaled at

runtime to the physical dimensions of the actual swarm arena; for instance, if the physical

swarm arena is 2.5 feet in height, then the first horizontal position character is 0.4× 2.5 = 1

foot from the left arena edge. In total, this combination of alphabets produces a dictionary

with 5× 2× 3× 2 = 60 total possible polygons, and hence 60 possible swarm behaviors.

Online user study We conducted the online user study via Amazon Mechanical Turk1 by

creating a Human Intelligence Task (HIT) for participant submission. The HIT contained

both a set of graphical and text instructions teaching the swarm dictionary to the participant,

followed by a set of 150 shape pair queries. Once a participant accepted a HIT task, they

proceeded to read the instructions, answer all queries, and submit their responses. In total,

1https://www.mturk.com/

147

150 participants were recruited in the study, corresponding to 150 submitted and accepted

HITs. Each shape pair query presented a blue, solid shape and a red, dashed shape as in

Figure 3.3b (polygon outlines were presented rather than actual swarm configurations), and

asked “For the image below, select whether the test shape (red dashed edges) comes after or

before the reference shape (blue solid edges), as defined in the instructions above.”, which

the participant responded with “Before” or “After.” During the study, each participant had

access to an informational graphic presented in Figure 3.3a as a visual aid in recalling the

dictionary ordering.

The 150 shape pairs were randomly generated in such a way that the critical character

determining the order of each pair was evenly distributed across all four letters. Within this

query set, 6 “cheat detection” pairs were presented each consisting of two identical triangles

with all the same parameters except horizontal position, which is an “easy” question and is

unlikely to be answered incorrectly unless a participant is randomly selecting answers to

finish the study as quickly as possible (Supplementary Figure A.2); the participants were

not told that these pairs were used for cheating detection. Before approving a participant’s

HIT submission, we evaluated their responses on these cheat detection queries to assess

if they were simply selecting answers at random. The remaining 144 queries were evenly

distributed between shape pairs where the horizontal position, vertical position, number of

sides, or size was the first character to differ between the two configurations in question (36

shape queries per critical character, resulting in 36× 4 + 6 = 150 total pairs).

To generate a shape pair with the desired critical character (36 pairs for each critical

character), a character was randomly generated for each alphabet that precedes the critical

character, and set for both shapes in the pair. This way, the critical character would in fact be

the first character that differs between the shapes in question. Next, two distinct characters

were randomly selected from the critical character alphabet, one for each shape in the pair.

Finally, the remaining characters succeeding the critical character were randomly populated

separately for each shape in the pair. All generated shape pair queries (including pairs for

148

cheating detection) were then shuffled into a random order. Although the query order was

randomly shuffled, each HIT (and therefore each participant) responded to the same fixed

order of queries; in other words, query order was not randomized between participants.

To qualify for participation in the study, participants must have had a record of at least

1,000 approved HITs from previous tasks on Mechanical Turk, and must have had an

overall HIT approval rate of 95% or greater at the time of submission. After qualifying

participants accepted and completed our HIT, they were automatically approved unless

flagged as being suspect of randomly selecting answers, in which case they were manually

reviewed. Participants were automatically rejected if they did not answer every query, or if

they had already completed the HIT previously. The details of this process are presented

in Section A.3.1. Each approved participant was paid $8 for completing all pair orderings,

and was awarded a $4 bonus if they achieved an accuracy of 95% or higher of correct pair

orderings. Overall, 150 participants were recruited, of which all 150 were approved. Of

these, 125 achieved an overall response accuracy of over 95% and so were awarded a $4

bonus.

The 6 cheat detection queries were omitted during data analysis, resulting in 144 shape

pairs analyzed per participant. Overall sorting accuracy was calculated per subject as the

fraction of correct responses to these 144 regular queries. Sorting accuracy was calculated

per critical character as the fraction of correctly answered queries among the 36 shape

pair queries with the respective critical character. Distributions are plotted in Figures 3.3c

and 3.3d as kernel density estimates.

Robot swarm setup The Robotarium arena and its virtual counterpart, both provided by

the Georgia Robotics and InTelligent Systems Laboratory (GRITS), were used as swarm

operating spaces. The Robotarium [200] is a remotely accessible, multi-robot research

facility that provides global position and orientation tracking of fiducial markers placed on

each robot, a WiFi communication infrastructure to broadcast information to the robots,

149

and an automatic recharging mechanism. The robot swarm consists of GRITSBots [201],

which are differential-drive wheeled mobile robots with WiFi communication and infrared

range-sensing capabilities. These robots may be modeled as unicycles, i.e., for the ith robot

in the swarm, the planar position pi = (xi, yi) and orientation θi follow the dynamics given

by

ẋi

ẏi

θ̇i

 =

cos(θi) 0

sin(θi) 0

0 1

vi
ωi

 ,

where vi, ωi are its linear and angular velocities, respectively. The Robotarium API [202]

provides a simulator that enables the testing of algorithms in a virtual setting prior to

deployment in the real robots.

Each swarm configuration (physical or virtual) consists of ten robots (n = 10), which

collectively conform to a specified coverage density φ(q, t) ∈ (0,∞) which describes the

desired distribution for all points q in the space D ⊂ R2 at time t [90]. The robots achieve

this distribution by finding an optimal configuration with respect to the the locational cost

[203] as weighted by the reference density φ, defined as

H(pi, t) =
n∑
i=1

∫
Vi

‖q − pi‖2φ(q, t) dq,

where the Vi ⊂ D form a Voronoi tessellation of the space using the position of the robots

as generators, and properly partition D. The optimal configuration is achieved through a

distributed control law [90] which relies only on nearby neighbor information, given by

ṗi = κ(ci(pi, t)− pi) +
∂ci
∂t

+
∑

j∈Ni(t)

∂ci
∂pj

(
κ(cj(pj, t)− pj) +

∂cj
∂t

)
,

where κ > 0 is a tuning parameter, ci(pi, t) is the center of mass for Vi, and Ni(t) is the

150

set of robots near robot i at time t. This control law is mapped into the unicycle dynamics

through a near-identity diffeormorphism [204]. Specifically, for λ > 0 the linear and angular

velocities are obtained as vi
ωi

 =

 cos(θi) sin(θi)

− 1
λ

sin(θi)
1
λ

cos(θi)

 ṗi.
To use this interface, the abstract polygons in our dictionary need to be translated to a

continuous density function describing swarm coverage. This was achieved by constructing a

Gaussian mixture model (GMM) from the vertices and edges of a given polygon. Specifically,

we placed an isotropic Gaussian distribution at each polygon vertex, and on each edge we

placed two Gaussian distributions with means evenly spaced between the edge’s vertices,

and with a 10/1 ratio of variance parallel to the edge to variance perpendicular to the edge

(see Supplementary Figure A.3). To define this GMM more formally, let v1 = [x1, y1]T

and v2 = [x2, y2]T denote two vertex coordinate pairs connected by an edge, and let

w = 2(v2 − v1)/3. An isotropic Gaussian distribution with coordinate-wise variance of

0.007‖w‖2 was placed at each vertex, in units relative to the arena height. Two additional

Gaussian distributions with means at v1 +w/2 and v1 +w were placed on the edge between

v1 and v2, each with a covariance matrix of

Σ =

[
w
‖w‖2

w⊥

‖w‖2

]0.07‖w‖2 0

0 0.007‖w‖2

[w
‖w‖2

w⊥

‖w‖2

]T
where w⊥ =

 0 1

−1 0

w.
This GMM was then transmitted to the Robotarium using User Datagram Protocol (UDP)

packets via WiFi.

Motor imagery input classification In order for the user to provide a binary input through

the use of a mental command detected by EEG, raw signals from scalp electrodes must

be processed and subsequently classified into one of two commands. Although EEG

151

is associated with low spatial resolution and high sensitivity to noise, its high temporal

resolution can be leveraged to extract simple mental commands from electrical activity.

In the case of motor imagery, it has been shown that mental imagery of left or right

hand dorsiflexions produces discernible EEG features over different spatial regions on the

scalp [92]. Specifically, left and right hand motor imagery produces a decrease in the

power of the mu (8-12 Hz) and beta (18-26 Hz) bands over the contralateral side of the

scalp (a phenomenon called event-related desynchronization, or ERD), and sometimes

produces an increase of power in these bands over the ipsilateral side (called event-related

synchronization, or ERS) [53, 92]. If these signature changes in power spectra can be

recognized, then binary classification can be performed to detect left or right hand motor

imagery.

To built such a motor imagery classifier with acceptable accuracy, we adopt a procedure

that combines protocols from a series of studies related to optimal spatial filtering of EEG

signals for motor imagery classification [93, 205, 99, 206, 207]. At a high level, the method

first temporally filters EEG measurements in an ERD/ERS frequency range of interest,

then trains spatial filter coefficients that maximize the signal power in one motor imagery

class and minimize it in the other. This spatial filtering process, known as Common Spatial

Patterns (CSP) filtering, yields features that discriminate between power spectrum changes

due to different motor imagery classes. Finally, these filtered and processed features are

classified with a linear discriminant analysis (LDA) classifier.

EEG measurements are sampled at 2 kHz from a 32-electrode BioSemi ActiveTwo

system. The use of CSP filtering requires the use of at least 18 electrodes over the motor

cortex [205]; here, we record electrodes F3, Fz, F4, FC5, FC1, FC2, FC6, T7, C3, Cz,

C4, T8, CP5, CP1, CP2, CP6, P3, Pz, and P4 based on the International 10/20 system.

BioSemi ActiView2 is used to monitor EEG signal quality during scalp recording setup.

Signals are downsampled to 128 Hz and referenced using the Common Average Reference

2https://www.biosemi.com/download.htm

152

(CAR), which subtracts the mean of all electrodes from each individual signal [208]. Then,

signals are temporally filtered with a 3rd order Butterworth notch filter centered at 60 Hz

with a band of 57-63 Hz and a pass band ripple of 0.5 dB, a 6th order Butterworth band

pass filter with a band of 0.5-50 Hz and a pass band ripple of 0.5 dB, and a 6th order

Butterworth bandpass filter with a band of 8-30 Hz and a pass band ripple of 0.5 dB to limit

the considered frequencies to the mu and beta ranges [206].

In order to detect the power spectrum changes due to ERD/ERS during motor imagery,

the choice of spatial filter coefficients among electrodes must be optimized to maximally

discriminate between left and right hand motor imagery. The CSP method is ideal for this

type of discrimination since it maximally distinguishes between intraclass signal power,

which directly translates to the discrimination of ERD/ERS activity and therefore to the

detection of binary motor imagery commands (see Section A.3.1 for details of CSP training).

The two most discriminative CSP filters per class (four filters total) are applied to spatially

filter the temporally filtered signals, yielding a signal with four channels. A temporal

average of the square of each channel is taken over a window of length T with an offset

of t0 seconds (see below for details of parameter selection), resulting in an average power

pi for channel i ∈ {1, 2, 3, 4}. The final feature vector f of length four is then constructed

by taking the natural log of each channel power pi, normalized by the total power across

all channels, i.e. vi = ln
(

pi∑4
i=1 pi

)
. Finally, this feature vector is passed through a binary

linear discriminant analysis (LDA) classifier [209] to extract the issued left or right hand

motor imagery command. We summarize this process in the feature extraction portion of

Supplementary Figure A.6.

CSP filters and LDA classifiers are trained with a procedure adapted from Guger et al.

[207]. The BCI user sits in front of a monitor and imagines left or right hand dorsiflexions

according to a corresponding left or right arrow cue which appears on screen (Supplementary

Figure A.5). During a training session, each motor imagery class (left or right hand)

is presented for 30 synchronized recorded training points, with all 60 inputs presented

153

in a randomized order. During each synchronized training point recording, a fixation

cross appears for 2 seconds, at which point a left or right arrow cue is displayed for 1.25

seconds, prompting the subject to imagine the corresponding movement. The fixation cross

remains for 3.75 seconds after, during which the subject continues to imagine the instructed

movement. This results in a total training interval of 5 seconds. The cross is then cleared,

followed by an inter-stimulus-interval of uniformly randomly length between 1 and 2.5

seconds. Windows at a length of T = 4 s offset by 0.5 s are extracted from the 5 second

training interval (e.g., windows with t0 = 0 s, t0 = 0.5 s, or t0 = 1 s) and used to train CSP

filters and LDA classifiers based on the signal processing procedure described previously.

10x10 cross-validation is used to evaluate the accuracy of each 4 second window over all

training data, and the best 4 second window is selected to use for synchronous user inputs

using during testing.

If a cross-validation accuracy of 0.7 is exceeded for the best 4 second window, the feature

extraction and classifier pipeline is considered trained. Otherwise, additional sessions of 15

training points for each class are collected until some subset of training sessions results in

filters and a classifier with a cross-validated accuracy of at least 0.7. For instance, suppose

a first training set of 30 data points per class, labeled as dataset S1, does not result in a

sufficient cross-validation accuracy. Then, a second training session of 15 data points per

class is run, resulting in an additional training dataset labeled S2. The same filter, classifier,

and window extraction procedure described above is performed individually on S2 and

S1 ∪ S2, and the best model saved. If this model’s cross-validated accuracy does not exceed

0.7, another training set of 15 data points per class is collected, resulting in training dataset

S3. The best model from S3, S1 ∪ S3, S2 ∪ S3, and S1 ∪ S2 ∪ S3 is saved; this procedure

continues until a trained model exceeds the 0.7 threshold. The final cross-validated error

from the saved model is used to estimate the crossover probability parameter in the posterior

matching procedure during testing.

During testing, the distance-to-hyperplane output of the LDA classifier is used to create

154

a feedback bar updated in real-time to aid the user in tuning their motor imagery features

[210]. The feedback bar points in the direction of the classifier’s detected input (left or right)

and has a length proportional to the distance from each instantaneous feature vector f to the

classifier hyperplane. As we describe in Section A.3.2, this distance is a direct measure of

classification confidence. Feedback is generated over T = 1 second windows overlapped by

0.0625 seconds, and is displayed continuously during the entire testing phase.

OpenVibe3 is used for the real-time collection and processing of EEG signals, with

CSP filters and LDA classifier training performed offline in MATLAB. During testing,

the lab streaming layer4 communication protocol is used to interface in real-time between

signal acquisition, feature extraction, and feedback presentation in OpenVibe, and feature

classification and posterior matching operation in MATLAB.

Swarm control trials In order to demonstrate SCINET’s performance, GC (henceforth

referred to as “the subject”) learned the dictionary ordering for swarm configurations, trained

CSP filters and LDA classifiers with left/right imagined dorsiflexions, and evaluated his

swarm control ability using a virtual Robotarium arena over 70 trials. On each day (with one

session of trials per day), the subject sat in front of two monitors, one of which presented

the visualizations required for training and feedback for testing (run on a PC laptop) and the

other ran the Robotarium simulation in MATLAB (run on a MacBook laptop). At the start

of each session, the subject trained spatial filters and classifiers using the aforementioned

procedure until the specified training threshold was met. Then, the subject performed 10 test

trials per day on a Robotarium simulation. For each test trial, a target swarm configuration

was selected randomly without replacement from a set of possible targets and displayed in

the simulator as a blue outline (as in Figure 3.4b). The target set was constructed as a single

copy of each string in the dictionary (60 total), plus 40 additional copies that are evenly

spaced throughout the dictionary (for a total of 100 configurations).

3http://openvibe.inria.fr/
4https://github.com/sccn/labstreaminglayer

155

The subject then issued the appropriate motor imagery commands to steer the swarm

to each specified target configuration according to the posterior matching algorithm (see

section A.1 for a mathematical algorithm description). For the special case where a target

and guess configuration were equal, a “right” command was issued. The subject issued each

command in a synchronized input window of 5 seconds in length. After each command was

issued, a new configuration was broadcast to the robot swarm, and the robots readjusted

their positions while the subject waited and observed their movement. After each robot’s

velocity fell below a prespecified threshold, the swarm controller detected that the swarm

had settled on a single configuration and another input was requested from the subject. At

this point, the subject heard a single audible beep, which indicated that the swarm had made

its guess, and that they should decide on their next input. After a two-second pause, the

subject heard three more beeps, each separated by a single second, to count down to the

start of the synchronized input window. A final beep signaled the start of a 5 second input

window, during which the subject visually fixated on the real-time feedback bar. A single

beep signaled the end of the synchronization window, at which point the subject could stop

their command. Feature extraction and classification was performed using the same CSP

filters, LDA weights, and timing parameter t0 for extraction of a T = 4 second window as

during training. After each input was issued the system indicated the classification result

on-screen with a left or right arrow and the swarm rearranged to its updated configuration,

after which a new input window began and the subject observed the swarm as feedback for

their next command (Supplementary Figure A.4).

This process iterated until the posterior matching algorithm converged to a final estimate

of the subject’s configuration, at which point three short, audible beeps were played. Con-

vergence was defined by the algorithm maintaining a posterior distribution for the subject’s

target configuration, and stopping when any configuration met or exceeded a prespecified

posterior threshold. A single trial ended at the sooner of posterior matching converging or

the number of issued inputs reaching a maximum of 50 inputs. When the trial ended by either

156

means, the maximum posterior probability configuration was selected as the algorithm’s

final estimate.

The threshold for the convergence stopping criterion was selected from a lookup table

of convergence thresholds specified for various BSC crossover probabilities and desired

trial lengths. For a given crossover probability, 500 posterior matching simulated trials

(described below) were performed offline for each of several candidate thresholds, and the

corresponding table entry was set as the threshold that achieved the highest convergence

accuracy while not having an average number of inputs greater than the specified trial length.

Our specified average trial length for threshold lookup was set to 25 inputs, which is an

estimated number of synchronous inputs an EEG user can issue before becoming fatigued.

The lookup table was constructed by evaluating crossover probabilities from 0 to 50% at

increments of 5%, and posterior stopping thresholds of 0% to 100% at increments of 5%. If

the model’s crossover probability (i.e., the trained classifier’s cross-validation error) did not

appear in the lookup table, the next highest crossover probability in the table was used for

lookup.

To compute the configuration accuracy and expected number of input values in the lookup

table, each posterior matching simulation trial used the specified crossover probability and

candidate stopping threshold. Unlike the simulations described for modeling a non-stationary

input error profile, here each crossover probability used to generate input errors was fixed

throughout the entire simulation trial, and this generated error crossover was equal to the

crossover assumed by posterior matching in its posterior distribution updates. In each

simulation trial, a target string was selected at random from the configuration dictionary,

and the rules of posterior matching followed to simulate the role of a user. Each simulated

user input was passed through a simulated BSC with a fixed crossover probability at the

specified value. Each simulated trial was run for a maximum of 50 inputs, as was the case

for the virtual swarm control experiments.

The subject engaged in 7 total days of completed trials spread over the course of 3 weeks,

157

with 10 trials performed per day. On each day, the subject trained the EEG classifier using

the aforementioned procedure, completed 5 virtual swarm control trials, took a rest period,

and then completed 5 more trials. During one particular session, the subject perceived that

the EEG classifier feedback bar was qualitatively deteriorating after the first 5 trials, and

added 2 additional training sessions of 15 data points per class to the training set for the

second half of the session. On the other 6 days, both sets of 5 trials used the same initially

trained classifier. There was an 8th day of trials omitted from this study. On this day, the

subject trained the classifier as above and completed 3 trials on this day, but aborted the

session due to a feeling of complete loss of ability to issue motor imagery inputs. Upon

further investigation, it was found that these 3 sessions had a net EEG input error of 53%,

explaining the lack of control. These two ad hoc adjustments (additional training, aborted

session) are justifiable since the purpose of this experiment is to evaluate SCINET’s overall

performance under the assumption of a reasonably trained and sustainable EEG classifier.

Realistic simulation baseline To fit a non-stationary crossover probability model to the

empirical data in Figure 3.4c for use in a realistic SCINET simulation, an input error profile

was modeled by first fitting a least-squares cubic regression to the empirical crossover

probability curve (Supplementary Figure A.7a). The data points corresponding to one

issued input, the minimum point, and maximum point of this cubic function were then used

to fit a piecewise cubic Hermite interpolating polynomial (PCHIP), where the maximum

point was held until the maximum number of inputs (Supplementary Figure A.7b). The

motivation behind this procedure was to generalize the crossover behavior at lower numbers

of inputs while enforcing monotonicity as the number of inputs increased, since a decrease

in crossover probability would not realistically model factors such as user fatigue increasing

with more inputs. The resulting PCHIP was used to generate input errors in our realistic

SCINET simulation. Specifically, at input number i, the correct posterior matching response

was corrupted with a Bernoulli error (statistically independent of all previous and future

158

errors) with bias given by the PCHIP value at input i.

Even though input errors were generated according to the PCHIP, during each posterior

matching iteration the simulator modeled a binary symmetric channel with a fixed crossover

probability. This simulates the real-world effect of the trained classifier producing a cross-

validation error that is used as the BSC crossover probability estimate for each trial, yet

during the trial the BCI’s actual input error statistics may change with additional inputs. We

set the simulator’s fixed crossover estimate as the average input error across all inputs and

all virtual swarm trials, which evaluated to 21.8%. This value serves as an estimate of the

aggregate error to be expected over the course of a virtual swarm trial.

Once the PCHIP error generator was fit and the fixed crossover probability set, the poste-

rior matching simulation was run for 10,000 trials. At the start of each trial, a configuration

was selected uniformly at random from the dictionary to serve as a target for posterior

matching. We implemented the same stopping criteria for each trial as in the virtual swarm

trials performed by the subject: the posterior convergence threshold was selected from the

same lookup table of thresholds using the same procedure, and a maximum of 50 inputs

per simulation trial was enforced. When comparing simulation results against empirical

results from virtual swarm control in Figure 3.4d, trials were binned by convergence time

as follows: “Short” trials converged between 1 and 12 inputs (inclusive); “Medium” trials

converged between 13 and 18 inputs (inclusive); and “Long” trials converged between 19

and 50 inputs (inclusive). The number of trials converged in each bin were 24 Short, 25

Medium, and 21 Long virtual swarm trials, and 2,786 Short, 3,748 Medium, and 3,466 Long

simulated trials.

The subject also demonstrated two successful trials on the physical Robotarium system,

but the quantity of these trials was limited due to laboratory demand for the system and

practical considerations such as robot battery life. We implemented the same EEG training

and experimental setup procedures as in the virtual swarm sessions, with the only difference

being that physical robots responded to user commands rather than virtual robots.

159

Generalized simulation results To generalize the performance of SCINET to arbitrary

dictionaries, the simulator from Figure 3.4d was modified slightly. To fully evaluate the

tradeoff between achieved configuration accuracy and required number of inputs for each

dictionary size, we disabled convergence for both posterior matching and stepwise search

(see Section A.3.1 for a mathematical description of stepwise search) and instead output an

instantaneous configuration estimate after each issued input. After k inputs, this instanta-

neous estimate was taken as the configuration with maximum posterior probability, i.e., zj∗

where j∗ = arg max1≤j≤Nd αj(k) (see Section A.3.1). This maximum a posteriori (MAP)

estimate is distinct from the guess produced during each algorithm interaction with the

user, and is used only for analytical purposes to produce an error estimate. By outputting

an instantaneous guess after each input and computing its configuration accuracy, we can

directly observe the tradeoff between obtainable configuration accuracy and number of

inputs for each algorithm and dictionary size.

In Figures 3.5a to 3.5c, a fixed 10% crossover probability was assumed by each algorithm

during posterior updating, and the same crossover probability was used to generate input

errors. In Figures 3.5d to 3.5f, as in the comparison against virtual swarm trials the PCHIP

error profile of Figure 3.4c was used to generate Bernoulli input errors at each number

of inputs, while each algorithm assumed a crossover probability of 21.8% for posterior

updating. Each simulation — posterior matching or stepwise search, each run with fixed

or non-stationary crossover probabilities — was repeated for 1,000 trials, with the target

configuration selected uniformly at random from the dictionary at the beginning of each

trial.

To evaluate performance on various dictionary sizes, the dictionary size parameter Nd in

posterior matching and stepwise search was varied over simulations (see Section A.3.1 for

parameter definition). Each setting of Nd corresponds to a different number of controllable

dictionary degrees of freedom. To establish this relationship, we consider a dictionary with

b characters for each of r alphabets, corresponding to r degrees of freedom. The total

160

number of strings in the dictionary is then Nd = br. To select an alphabet size b, we used the

rounded harmonic mean of our alphabet sizes (i.e., 5,2,3,2) which evaluates to 3 characters.

We generated dictionaries with r = 2, 4, 6, 8 degrees of freedom, corresponding to sizes

of Nd = 9, 81, 729, and 6,561 respectively. Note that each algorithm operates on the

total order of strings in the dictionary without regard to individual alphabets, and the only

parameter that affects simulation results is the dictionary size, rather than the exact alphabet

size or degrees of freedom. However, formulating the dictionary size parameter in terms

of alphabet size and degrees of freedom allows us to draw connections as in Figure 3.5

between these various parameters. We also performed the same experiments using an

alphabet size of b = 5 (see Supplementary Figure A.14) and resulting dictionary sizes of

Nd = 25, 625, 15, 625, and 390,625. This experiment corresponds to a more conservative

relationship between degrees of freedom and dictionary size; keeping degrees of freedom

fixed and increasing alphabet size results in a larger dictionary, and therefore more strings

to search over (and more user inputs required) to control the same number of degrees of

freedom. For this reason, we call the b = 3 case the “standard” degrees of freedom estimate,

and b = 5 the “conservative” degrees of freedom estimate.

In Figures 3.5a and 3.5d, ITR was calculated from the error-free accuracy in Figures 3.5b

and 3.5d respectively. At k inputs issued, let Pk denote the error-free accuracy, which is

calculated as the number of trials where the kth instantaneous estimate (i.e., zj∗) equals the

ground truth target configuration, divided by the total number of simulation trials (1,000).

ITR, denoted after k inputs as Rk, is then calculated in units of bits as [53]

Rk = log2Nd + Pk log2 Pk + (1− Pk) log2

1− Pk
Nd − 1

.

ITR represents the aggregate amount of information about the target configuration conveyed

after k inputs from the user to the swarm. ITR can be also interpreted mathematically as the

bit rate over a discrete memoryless channel where the target is selected with probability Pk,

161

and any remaining configuration is erroneously selected with an equal probability of 1−Pk
Nd−1

.

To calculate absolute deviation in Figures 3.5c and 3.5f, let Zj∗(k) and Zt denote the

unit interval representations (see Section A.3.1) of the MAP estimate after k inputs and

the target configuration, respectively. Then absolute deviation, or “dictionary distance,” is

calculated as |Zj∗(k)− Zt|, and averaged over all trials for each simulation.

A.3 Brain-computer Interfacing Supplementary Material

A.3.1 Supplementary Methods

Cheating Detection

We now describe the procedure used to flag and examine online user study participants

suspected of selecting answers at random. To automatically flag suspicious sets of responses,

we established a set of benchmarks evaluating response time, overall accuracy, accuracy

per character, and accuracy over the course of the HIT; a participant failing any of these

benchmarks resulted in a manual approval or rejection of their HIT. A participant was flagged

for suspicious duration if they completed the entire task (including reading instructions and

submitting answers) in under 25 minutes, which may indicate that a sincere effort was not

made to answer each query carefully. This duration threshold was estimated by the authors

as the approximate time our HIT might take to complete at a reasonable completion pace.

When evaluating cheat detection queries (6 total), a participant was flagged if they

correctly answered exactly 2, 3, or 4 queries. Conversely, a participant passed this benchmark

if they answered 5 or 6 cheat detection questions correctly — performing as expected — or

if they answered only 0 or 1 test queries correctly, as might be the case if they made sincere

efforts but had a reversed understanding of the dictionary ordering.

A participant was flagged for suspicious overall accuracy if their p-value for a two-tailed

hypothesis test exceeded a threshold of 10%, with a null hypothesis of chance selection

(50% probability of correct selection per query). We estimated this p-value with a normal

162

approximation to a binomial distribution with a 50% bias over 150 queries (including cheat

detection queries). The p-value is computed as the probability of an overall accuracy at or

further from chance than the measured accuracy. Specifically, for c correct responses over

150 shape pair queries and letting Φ denote the standard normal cumulative distribution

function (c.d.f.), this p-value is calculated as

p1(c) = 2 min

(
Φ

(
c

150
− 0.5√
0.25
150

)
, 1− Φ

(
c

150
− 0.5√
0.25
150

))
. (A.5)

Two additional benchmark’s were evaluated involving p-value evaluation per critical

character, and error performance across the HIT duration. In the former, p-values were calcu-

lated as in eq. (A.5) when binning trials (including the six test questions) by critical character.

These p-values were multiplied to form a “net” p-value, which flagged a participant when it

exceeded 10%. To evaluate error performance throughout the duration of a HIT, an ordinary

least-squares regression was fit to the cumulative number of correct responses throughout

the course of the HIT. If the r2 value of the linear model fell below 0.64, then the participant

was flagged. The motivation behind this test was to detect participants who performed well

initially, but then decided to select random answers for the remainder of the HIT; such a

participant would show a highly nonlinear error performance over the course of the HIT,

unlike participants who answered consistently according to their understanding of the task.

Additionally, such nonlinear behavior would not be accounted for by a varying difficulty

level over multiple queries, since the sequence of queries was presented in a shuffled order.

No participants were flagged for this linear model test, and so we omit its details from the

discussion here. Only one participant (participant 145) was flagged for their “net” p-value

surpassing 10%, but this participant was also flagged for total accuracy (eq. (A.5)) and so

we only discuss the latter.

Participants 2, 131, and 145 were flagged for cheat detection query responses (each

answering 4 test queries correctly out of 6), and participants 131 and 145 were additionally

163

flagged for overall accuracy. Participant 2 had a duration of 54 minutes, and so was approved

due to an assumption of genuine effort due to their extensive completion time. Participants

131 and 145 had completion times of 85 and 58 minutes respectively, and so were also

approved due to extensive completion time. Participant 33 was flagged for total accuracy

only; due to a duration of 65 minutes and answering all 6 cheat detection queries correctly,

they were approved. Participants 4, 41, 43, 51, 61, 63, 68, 71, 80, 86, 95, 106, 125, 139,

142, and 144 were flagged for duration only. None of these participants had an accuracy

below 96% (over all 150 queries), and all had a duration of at least 14 minutes. Since the

durations were still significant and all performed at high accuracy, these participants flagged

for durations were approved since their behavior did not indicate random selection. Overall,

all 150 participants were approved in this study.

Common Spatial Patterns Filtering

Common Spatial Patterns (CSP) filtering is a supervised spatial filtering method that max-

imizes the difference in filtered signal variances between two classes [205, 206]. This

separation is useful for motor imagery detection, which uses signal power (i.e., signal

variance) as the classification feature. We briefly summarize our implementation of the CSP

algorithm [205, 206] below, with notation and derivations drawn largely from Ramoser et al.

[205].

Let {Xc,i}Nci=1 denote the training set of Nc temporally filtered EEG signals for class

c ∈ {l, r} (for “left” and “right”), where each Xc,i is a T × d matrix of T EEG samples over

d channels. Let µc,i = 1
T

∑T
t=1 Xc,i[t, :] denote the spatial mean of signal block i for class c,

where Xc,i[t, :] denotes the tth row of matrix Xc,i. We define the zero-mean signal matrix

X̃c,i by subtracting the spatial mean from each sample, i.e., X̃c,i[t, :] = Xc,i[t, :]−µc,i. Then,

we compute the averaged covariance matrices for both classes as

Cl =
1

Nl

Nl∑
i=1

X̃T
l,iX̃l,i

Tr(X̃T
l,iX̃l,i)

Cr =
1

Nr

Nr∑
i=1

X̃T
r,iX̃r,i

Tr(X̃T
r,iX̃r,i)

164

and form the composite covariance matrix as

C = Cl + Cr. (A.6)

We then factor C into its eigendecomposition C = UΛUT , where the eigenvalues in

diagonal matrix Λ are sorted in descending order and the columns of U are orthogonal

eigenvectors. Note that Λ only has at most d− 1 positive eigenvalues. To see this, note that

since the raw EEG signals are processed with CAR referencing, each Xc,i has rank at most

d− 1 since by definition its columns are linearly dependent, i.e.,
∑d

k=1 Xc,i[t, k] = 0 for all

1 ≤ t ≤ T . X̃l,i also has rank at most d− 1 since

d∑
k=1

X̃c,i[t, k] =
d∑

k=1

[
Xc,i[t, k]− µc,i[k]

]
=

d∑
k=1

[
Xc,i[t, k]− 1

T

T∑
j=1

Xc,i[j, k]

]

=
d∑

k=1

Xc,i[t, k]− 1

T

T∑
j=1

(d∑
k=1

Xc,i[j, k]

)

= 0− 1

T

T∑
j=1

0

= 0.

Next, consider the d× T (Nl +Nr) matrix given by the horizontal concatenation of all

{X̃T
c,i}Nci=1, c ∈ {l, r}, i.e., X̃ = [X̃T

l,1, X̃
T
l,2, . . . X̃l,Nl , X̃

T
r,1, X̃

T
r,2, . . . X̃r,Nr]. Clearly X̃ has

rank at most d− 1, since
∑d

j=1 X̃[j, :] = 0 by construction. Therefore the column space of

X̃ , i.e., the span of {X̃T
c,i}Nci=1, c ∈ {l, r}, has dimension at most d− 1. By construction, the

columns of C (eq. (A.6)) lie in this same column space, and so C has rank at most d− 1.

Therefore, before the whitening stage of CSP, we truncate Λ to the top d− 1 eigenvalues,

resulting in d−1×d−1 matrix Λ̂, and truncate Û as the first d−1 columns ofU . We then form

the whitening transformation P =
√

Λ̂−1ÛT , so that PCP T =
√

Λ̂−1ÛT Û Λ̂ÛT Û
√

Λ̂−1 =

165

I . Let Sl = PClP
T and Sr = PCrP

T . Then Sl and Sr share eigenvectors with eigenvalues

that sum to unity, i.e.,

Sl = BλlB
T Sr = BλrB

T λl + λr = I.

To see this, note that Sl + Sr = P (Cl + Cr)P
T = PCP T = I , and suppose that b is an

eigenvector for Sl with eigenvalue λl. Then Slb = λlb, and so

b = Ib = (Sl + Sr)b = Slb+ Srb = λlb+ Srb =⇒ Srb = (1− λl)b

and therefore b is an eigenvector for Sr with eigenvalue 1− λl. This implies that projecting

onto the eigenvectors of Sl with the largest eigenvalues will result in variance separation

between whitened data from classes l and r: whitened data from l will remain mostly

unattenuated, while whitened data from class r will have attenuated signal energy. The

reverse relationship is true when projecting onto the top eigenvectors of Sr instead.

The final CSP filtering matrix is then constructed as W = BTP , where the columns of

B are sorted in decreasing order from largest to smallest corresponding eigenvalues of Sl.

This transformation whitens incoming data and projects it onto each eigenvector of Sl, such

that the resulting vector has components with separated energy levels for each class. This

d− 1× d filter is applied to a T × d signal X as Z = XW T , where Z is of size T × d− 1.

In SCINET, we apply a truncated CSP filter that only uses the top two spatial filters for each

class. Letting wTi denote the ith row of W , we use only rows 1, 2, d− 2, d− 1 of the filter

(corresponding to the top two eigenvectors of each class), i.e., we apply filter

Ŵ =

wT1

wT2

wTd−2

wTd−1

.

166

Stepwise Search

Stepwise search is a Bayesian algorithm that tracks a probabilistic estimate of the user’s

desired configuration by incrementing or decrementing guesses one string at a time to

navigate the dictionary. The initialization of stepwise search is identical to that of posterior

matching.

Guess selection At k = 0, the swarm guess is initialized as n(0) = bNd/2e and ẑ(0) =

zn(k), where the bxe operator rounds x to the nearest integer. For k > 0, the guess is updated

as

n(k) = max(min(n(k − 1) + (2Yk − 1), Nd), 1) ẑ(k) = zn(k).

Recalling that Yk ∈ {0, 1}, this guessing rule is equivalent to incrementing or decrementing

the guessed configuration by one string position in the direction indicated by the received

input, while accounting for edge cases (receiving Yk = 0 for n(k − 1) = 1 maintains

n(k) = 1, and receiving Yk = 1 for n(k − 1) = Nd maintains n(k) = Nd). The noisy user

input and posterior update stages are identical to those in posterior matching.

Supplementary Figures

Figure A.1: Polygon dictionary parameters, specified relative to the swarm arena dimensions.

167

Figure A.2: Shape query for HIT cheating detection. This query appeared 6 times in each
participant’s query set, randomly scattered among regular queries. Participants were not
told that these queries were used for cheat detection, although they were told that random
selection without a “good faith” effort would be detected (without stating how) and their
HIT submission would then be rejected.

(a) (b) (c)

Figure A.3: Gaussian mixture modeling for swarm density coverage. a, Gaussian mixture
model displayed over a triangle target configuration. Each individual component of the
GMM is stylized with a green outline. b, Gaussian mixture model density function, without
stylization. As described in Diaz-Mercado et al. [90], the robot swarm executes a distributed,
low-level algorithm to cover the specified coverage density function, where each robot uses
only local information. c, Gaussian mixture model density with virtual robots performing
swarm coverage.

168

(a) (b)

Figure A.4: Physical swarm control. The BCI user observes the current swarm guess to
decide their next motor imagery input according to the rules of posterior matching. When
prompted by an audible beep, the user fixates on a blue feedback bar and imagines their
intended motor imagery command; the bar responds in real-time to indicate the command
being classified, which can aid the user in issuing a reliable command. After each command
is issued during a synchronous window of 5 seconds, another beep sounds and an arrow
indicates to the user their classified input. While the virtual swarm trials were conducted in
a different room with different monitors than those shown here, the software interface used
to elicit user motor imagery commands and present feedback was identical to that presented
here.

Figure A.5: Motor imagery training. During motor imagery classifier training, the user
imagines left or right hand motor imagery movements according to a synchronized visual
cue.

169

Figure A.6: Full SCINET feedback system. The user (green boxes, top left) observes
the current swarm configuration along with synchronized motor imagery prompts (see
Supplementary Figure A.4) to decide on a motor imagery command for communicating
their intended behavior according to the rules of posterior matching. In a signal processing
pipeline (pink boxes, top right) beginning with EEG scalp recording and ending with an LDA
classifier, the user’s motor imagery command is classified from raw scalp measurements.
The detected motor imagery command is input into the BZ algorithm, which updates the
configuration guess in the dictionary. This configuration is translated to a Gaussian mixture
model density (see Supplementary Figure A.3) and transmitted to the swarm for distributed
density coverage.

(a) (b)

Figure A.7: Modeling a non-stationary input profile from empirical crossover data. a,
Least-squares cubic fit to empirical crossover data. The model is highlighted with stars at
the first input value, the minimum value, and the maximum value. b, A piecewise cubic
Hermite interpolating polynomial (PCHIP) was fit to the first, minimum, and maximum
value points from a. We clamped the maximum value to remain fixed until the maximum of
50 inputs, so that the resulting PCHIP error model is non-decreasing. This behavior models
the fact that the BCI user may experience fatigue as the number of inputs increases, possibly
resulting in non-improving input error statistics after issuing many inputs.

170

A.3.2 Supplementary Discussion

Online User Study Critical Character Analysis

In Supplementary Figure A.8, we analyze dictionary sorting proficiency for each individual

participant in the online user study. Figure A.8a plots each individual participant’s accuracy

in sorting shape pairs, binned by critical character; for each subject these values are con-

nected by straight lines, for visualization purposes. Each participant’s piecewise linear curve

is colored by their overall sorting accuracy across all 144 (not including test queries) shape

pairs, as indicated by the color bar. Generally speaking, the lowest performing subjects

(dark colors) performed poorly across all critical character comparisons. Interestingly,

several subjects performed well for horizontal position, dropped in performance for vertical

position, and increased in performance for number of sides and size comparisons. Several

subjects sorted vertical position below 50% accuracy, implying that they sorted this character

consistently, but in the reversed alphabet order of precedence.

To more formally analyze the trends over each individual participant, for each participant

we performed a least-squares linear fit to their accuracies across critical characters, with

categorical values converted to regressors as 0 (horizontal position), 1 (vertical position), 2

(number of sides), and 3 (size). In Figure A.8b, we present a scatter plot of the regression

slope of each participant’s linear model, plotted against each model’s intercept at the

horizontal position. As in Figure A.8a, participants are colored coded by their overall sorting

accuracy. Only two participants both sorted early string characters with high accuracy

(large horizontal position intercept) and decreased in performance for deeper characters

(negative regression slope). Otherwise, participants mostly performed accurately across

all characters (high horizontal position intercept, flat slope), or performed moderately for

early characters and increased in accuracy, with a positive regression slope. Only a few

participants performed poorly for early characters and continued to perform poorly for

deeper characters.

171

In Figures A.8c and A.8d, we plot a histogram and empirical cumulative distribution

function of regression slopes across all participants. As can be observed from Figure A.8d,

only approximately 30% of participants have negative regression slopes, and only 10%

of participants have regression slopes of 1% accuracy decrease or worse per additional

character. These results collectively suggest that overall, the performance of individual

participants did not decrease noticeably as character depth increased. This suggests that as

the number of characters in each heterogeneous dictionary string is increased, users are still

able to both identify and make accurate comparisons with respect to each critical character.

172

(a)

(b)

(c)

(d)

Figure A.8: Trend line analysis of individual participant performance over critical
character comparisons of increasing depth. a, Each individual participant’s sorting
accuracy is plotted as a connected line over accuracies calculated with respect to each
critical character comparison. Each line is colored by the participant’s overall sorting
accuracy across all queries. b, After fitting a linear least squares model to each participant’s
piecewise curve in a, we plot the slope and intercept at the horizontal position for each
participant’s linear regression model. c, Histogram of individual participant regression
slopes. d Empirical cumulative distribution plot of individual participant regression slopes.
Only approximately 30% of participants have negative regression slopes, and only 10% of
participants have slopes of 1% accuracy decrease or worse per additional character.

173

Virtual Swarm Evaluation

Figure A.9 compares the histograms of the number of inputs required for convergence in

each experimental and simulated trial. These histograms generally agree in shape, with right

skewed distributions and peaks at the maximum number of inputs, reflecting that several

trials “timed out” before convergence. This overall agreement corroborates the simulation’s

realistic modeling of the overall system.

(a) (b)

Figure A.9: Histogram of number of inputs until convergence for virtual swarm control (a)
and simulated (b) trials.

Figure A.10 plots the number of recorded samples at every number of inputs, across

all 70 virtual swarm trials. Since no trials cross the convergence threshold until after at

least 8 inputs, 70 input samples were recorded at every number of inputs at or below this

point. As trials begin to converge after 8 inputs, fewer recorded samples are available for

larger number of inputs due to trials converging and halting input recording. Due to this

decreasing sample size at larger numbers of inputs, the empirical EEG crossover probability

in Figure 3.4c is most accurately estimated at lower numbers of inputs. As the number of

inputs increases, crossover probability is less accurately estimated due to smaller sample

sizes, reflected in the larger error bars in the crossover probability estimate.

In Figure A.11, we analyze the data in Figure 3.4d in terms of absolute deviation rather

than error-free configuration accuracy. As in Figure 3.4d, virtual swarm and simulated trials

174

Figure A.10: Number of samples at each number of issued inputs, aggregated over all
virtual swarm trials. The number of samples observed at each number of inputs decreases
as trials converge to selected configurations. This results in larger error bars in Figure 3.4c
and higher late trial variability in Supplementary Figures A.12 and A.13.

were separated into the same “Short” (between 1 and 12 inputs until convergence, inclusive),

“Medium” (between 13 and 18 inputs until convergence, inclusive), and “Long” (between

19 and 50 inputs until convergence, inclusive) trial bins. Then, we analyzed the absolute

deviation trajectories (see Section A.2 for a description of absolute deviation) within each bin

by comparing a trial’s target configuration to the posterior median guessed by the swarm after

every input; this differs from the absolute deviation calculation in Figure 3.5, which instead

calculates absolute deviation with respect to an instantaneous MAP configuration estimate.

Figures A.11a to A.11c plot absolute deviations for both virtual swarm and simulated trials

within Short, Medium, and Long bins, respectively. Figure A.11d plots absolute deviation

over all trials. In each figure, vertical red lines visually indicate the span of each bin range,

depicting the range of inputs in which all trials within the bin converged. The virtual swarm

control and simulation trials have absolute deviations that mostly agree in the first two bins,

with increased differences between empirical and simulated trials in the Long bin. Both

empirical and simulated results in the Long bin experience increasing absolute deviations,

due to the fact that input errors increase toward chance for larger numbers of inputs (see

Figure 3.4c). Regardless, the simulated system in its entirety matches the behavior of the

175

experimental trials, indicating that the simulator used here can reliably account for realistic

experimental factors such as user fatigue.

176

(a) (b)

(c) (d)

Figure A.11: Absolute deviation between guessed swarm configuration after each number of
inputs (guessed as posterior median) in comparison to target configuration, for both virtual
swarm control and simulated trials. The crossover model from Figure 3.4c was used to
generate non-stationary errors in all 10,000 simulation trials. Each pane depicts a subset of
trials binned by number of inputs until swarm convergence. The bin range for each pane
is depicted through two vertical lines at the bin edges (inclusive). Each trial set, for both
virtual swarm control and simulated trials, is plotted as mean absolute deviation with error
bars depicting 95% bootstrap confidence intervals over 10,000 samples (separate resampling
for every number of inputs). a, Trials converging between 1 and 12 inputs, inclusive. b,
Trials converging between 13 and 18 inputs, inclusive. c, Trials converging between 19 and
50 inputs, inclusive. d, All trials. In each pane, values at 0 inputs indicate absolute error at
initialization, before a trial begins.

177

Signal feature analysis In Figure 3.4c, the empirically observed crossover probability

degrades in quality (approached chance) at the number of issued inputs increases. As

demonstrated in Figure 3.4d, this behavior can be accounted for in a posterior matching

simulator that assumes a fixed crossover probability while errors are generated according

to a non-stationary input error profile. Below, we further analyze the empirically observed

input degradation. In particular, we analyze the behavior of the LDA classifier component of

our motor imagery detection pipeline, and measure signal quality by observing the changing

classifier confidence over time.

Let f ∈ R4 denote the EEG feature vector for a given input (see Figure A.6), and let

µ ∈ R4 and τ ∈ R denote the hyperplane weights and offset respectively of the trained

LDA classifier [209]. Let Y ∈ {0, 1} denote a classification result of left-hand (Y = 0) or

right-hand (Y = 1) motor imagery detection, determined by the sign of the distance to the

classifier hyperplane, i.e., Y = sign(µTf − τ). In LDA, a standard result [209] is that the

log-ratio of the class posterior distribution is given by

log
P (Y = 1 | f)

P (Y = 0 | f)
= µTf − τ.

Denote X ∈ {0, 1} to be the ground truth (i.e., correct) motor imagery input that the

user should issue, according to the rules of posterior matching. One way to measure the

quality of the classifier’s decision is to evaluate the ratio of the probability that it detects

the ground truth input correctly (i.e., P (Y = X | f)) over the probability that it detects the

ground truth incorrectly (i.e., P (Y 6= X | f)) It is easy to show that the log of this ratio

178

takes a convenient form:

log
P (Y = X | f)

P (Y 6= X | f)
= X log

P (Y = 1 | f)

P (Y = 0 | f)
+ (1−X) log

P (Y = 0 | f)

P (Y = 1 | f)

= X log
P (Y = 1 | f)

P (Y = 0 | f)
+ (X − 1) log

P (Y = 1 | f)

P (Y = 0 | f)

= (2X − 1) log
P (Y = 1 | f)

P (Y = 0 | f)

= (2X − 1)(µTf − τ). (A.7)

When the classifier is more confident in the correct class (which is unavailable to the

classifier at classification time, but is available in post hoc analysis) than the incorrect class,

then this log-ratio will be positive. Conversely, if the classifier is confident in the incorrect

decision, then this log-ratio will be negative. If the classifier is “unsure” in its decision,

then this log-ratio will be close to 0 since the classifier assigns equal probability to both

the correct and incorrect decision. These scenarios can also be interpreted geometrically

by considering the equivalent log-ratio form in eq. (A.7): the log-ratio of probability of a

correct to an incorrect decision corresponds to the signed distance from the feature vector to

the hyperplane, where the sign is determined by whether the classifier is correct or incorrect

in its decision. Decisions that are confident and correct will have a positive signed distance,

ambiguous decisions a signed distance of 0, and confident but incorrect decisions will have

a negative signed distance.

Supplementary Figure A.12 depicts the distribution of this log-ratio (or signed classifier

distance) over increasing numbers of inputs, on the same input data evaluated in Figure 3.4c.

After each number of inputs, we calculate the log ratio in eq. (A.7) with respect to the

corresponding EEG feature vector. Initially, the classifier is confident in correct decisions,

and this confidence decreases gradually towards zero as more inputs are issued. This metric

is a direct measure of feature degradation, due to the direct correspondence between the

log-ratio of classifier probabilities and the distance from each feature vector to the decision

179

boundary. In other words, as the number of inputs increases, the processed EEG signal

vectors are on average closer to the decision boundary, indicating that features are no longer

being well separated according to the classifier geometry established during motor imagery

training.

Figure A.12: Log-ratio of classifier probability assigned to the correct input over the
probability assigned to the incorrect input, plotted against the number of inputs issued in
a trial. Results are aggregated over all virtual swarm trials and plotted as mean log-ratio
with error bars depicting 95% bootstrap confidence intervals over 10,000 samples (separate
resampling for every number of inputs). When taken as a measure of classifier confidence,
the log-ratio’s steady decline indicates decreasing classifier confidence in its decisions, as
the classifier’s probability assignment to the correct input approaches 0.5. Equivalently, this
log-ratio measures the signed distance of each feature vector to the classifier hyperplane,
signed such that positive distances indicate correct classification.

For completeness, we also perform the same analysis when grouping inputs by correct

or incorrect classification (Supplementary Figure A.13). In Figure A.13a, we evaluate the

log-ratio of classifier probabilities only on inputs that were classified correctly. Although

the classifier is making correct decisions on this data group, it is clear from the gradual

log-ratio decline that the classifier’s correct decisions are made with less confidence as the

number of inputs increases to approximately 25 inputs. This corresponds directly to the

increasing crossover probability observed in Figure 3.4c. Conversely, in Figure A.13b, we

evaluate log-ratio for only incorrectly classified inputs. In this case, the log probability ratio

becomes more negative for increasing numbers of inputs up to approximately 25 inputs,

180

(a) Inputs classified correctly (b) Inputs classified incorrectly

Figure A.13: Log-ratio of classifier probability assigned to the correct input over the
probability assigned to the incorrect input, grouped by inputs that were classified correctly
(a) or incorrectly (b). Results are aggregated over all recorded inputs in each group and
plotted as mean log-ratio with error bars depicting 95% bootstrap confidence intervals over
10,000 samples (separate resampling for every number of inputs). a, When only analyzing
inputs that were detected correctly by the classifier, we still observe a decline in confidence.
b, We also analyze classifier confidence when grouped over inputs that were detected
incorrectly. Both a and b have missing data, since at certain numbers of issued inputs all
samples were either detected correctly or incorrectly. Error bars are omitted at numbers of
inputs with only a single sample.

indicating that the classifier becomes more confident in its incorrect decisions. Interestingly,

this behavior would indicate a degree of class reversal in the statistics of the extracted EEG

features. Both Figures A.13a and A.13b have missing data, since at certain numbers of

inputs all signals were detected either correctly or incorrectly.

Overall, the analysis in this section indicates that during test time (i.e., when issuing

inputs for swarm control, rather than for motor imagery training), the EEG feature statistics

shift after increasing numbers of inputs in a way that no longer aligns with or perhaps

experiences a reversal with respect to the linear classifier trained before each session. While

the focus of this work is high-complexity control despite the presence of such noisy inputs,

these results suggest that the increasing crossover probability observed in Figure 3.4c could

possibly be mitigated through a calibration step during the effector control period. During

such a step, effector control could be briefly halted to collect a small number of additional

supervised motor imagery inputs using the same protocol during training, such that the CSP

181

and LDA parameters can be readjusted. This calibration step could either be set ahead of time

(e.g., after 25 inputs), or could be automatically triggered when the LDA feature distance

(i.e., |µTf − τ |) falls below a prespecified threshold across multiple inputs, indicating a

possible mismatch between the current EEG statistics and the original classification pipeline

learned during session training. Finally, the analysis in this section does not take into account

the possibility of user error rather than classifier error; it is possible that an “incorrect” trial

as analyzed above is in fact the result of correct motor imagery classification, issued with an

incorrect user input. To fully disambiguate these sources of error, additional data collection

is necessary where after issuing each motor imagery input the user, via another means such

as a keypress or speech (if they are able to do so), indicates which hand movement they

intended to convey.

Extended Evaluation of Generalized Dictionary Simulations

In Figure A.14, we perform the same analysis as in Figure 3.5 except with a simulated

alphabet size of b = 5 (see Section A.2 for simulation details) rather than b = 3. We

refer to the case of b = 5 as the “conservative” degrees of freedom estimate, recalling that

we refer to b = 3 as the “standard” estimate. Since the posterior matching and stepwise

search simulations track mathematical partitions of the unit interval and operate directly on

the total dictionary order of strings rather than distinguishing between individual alphabet

orders (which is performed by the human user), the only parameter affected by alphabet size

relevant for simulation is the overall dictionary size Nd. In other words, distinct alphabet

sizes b1 and b2 and numbers of degrees of freedom r1 and r2 that happen to produce the same

dictionary size Nd = br11 = br22 will yield the same simulation results, since both scenarios

map to the same partitions of the unit interval. Because of this, Figure A.14 with b = 5

can be seen as mathematically equivalent to Figure 3.5 with b = 3, except with different

dictionary sizes for each number of degrees of freedom.

What does differ between these figures is the translation of each dictionary size to

182

ITR Error-free accuracy Absolute deviation
Fi

xe
d

(1
0%

)e
rr

or

(a) (b) (c)

N
on

-s
ta

tio
na

ry
er

ro
rs

(d) (e) (f)

Figure A.14: Performance as a function of number of inputs and dictionary size across both
fixed and non-stationary input errors, with conservative degrees of freedom estimates. The
same performance metrics (ITR, error-free accuracy, absolute deviation) with corresponding
error bars are displayed here as in the standard degrees of freedom estimate in Figure 3.5.

estimated degrees of freedom, since a fixed number of degrees of freedom for a larger

alphabet size corresponds to a larger dictionary than for smaller alphabets (see Section A.2

for details on the relationship between dictionary size and alphabet size). For this reason,

Figure A.14 serves as a more conservative estimate of the tradeoffs involved in controlling

more degrees of freedom. In particular, since each number of degrees of freedom corresponds

to a larger dictionary than in Figure 3.5, more inputs are needed to control a conservatively

estimated number of degrees of freedom than would be required for the standard estimate.

While this additional cost in number of inputs is apparent in Figure A.14 in comparison to

Figure 3.5, the same overall trend holds that posterior matching significantly outperforms

stepwise search across all metrics, and that with enough refinements posterior matching can

obtain high configuration accuracies at high estimated degrees of freedom.

183

In Figures A.15 and A.16, we evaluate additional simulation performance metrics

based on alphabet-wise convergence for both standard and conservative degrees of freedom

estimates. These metrics evaluate the performance of each algorithm in driving each

individual character to its correct target rather than measuring convergence of the entire

string at once, and provide another perspective on alphabet-wise convergence not captured

by the latter.

Expanding on notation from Section A.3.1, let ẑ = {σ̂i}ri=1 denote a configuration

estimate with ith character σ̂i ∈ 1, 2, . . . b, and let zt = {σit}ri=1 denote the target configu-

ration. Both configurations have r degrees of freedom each with alphabets of size b. Our

first alphabet performance metric is “alphabet accuracy,” which for a single configuration

estimate measures the fraction its characters that equal the corresponding characters in the

target configuration:

AlphAcc(ẑ, zt) =
1

r

r∑
i=1

δ(σ̂i, σit),

where δ(x, y) = 1 if x = y, and 0 otherwise. Figures A.15a, A.15d, A.16a and A.16d plot

alphabet accuracy averaged over multiple trials, calculated with respect to the instantaneous

MAP configuration estimate after every number of inputs.

Next, we calculate “alphabet deviation,” which in a similar spirit to absolute deviation

(or dictionary distance) calculates the sum of absolute deviations within each alphabet. As

in dictionary distance, the alphabet deviation measures the rate of convergence of each

alphabet character to its respective target character, rather than measuring a binary notion of

correct or incorrect convergence. Alphabet deviation is calculated as

AlphDev(ẑ, zt) =
r∑
i=1

∣∣∣∣ σ̂i − σitb

∣∣∣∣.
We normalize the absolute deviation within each alphabet by the alphabet size b such that

the resulting metric has a range between 0 and r that does not depend on alphabet size.

Figures A.15b, A.15e, A.16b and A.16e plot alphabet deviation averaged over multiple

184

trials, calculated with respect to the instantaneous MAP configuration estimate after every

number of inputs.

For completeness, we also calculate a normalized version of alphabet deviation which

we call “normalized alphabet deviation.” Normalized alphabet deviation is simply equal to

alphabet deviation normalized by the number of degrees of freedom. This yields an alphabet

deviation metric that scales between 0 and 1 for any number of degrees of freedom r, and

allows for a more equalized comparison between different degrees of freedom.

NormAlphDev(ẑ, zt) =
1

r

r∑
i=1

∣∣∣∣ σ̂i − σitb

∣∣∣∣.
Figures A.15c, A.15f, A.16c and A.16f plot normalized alphabet deviation averaged over

multiple trials, calculated with respect to the instantaneous MAP configuration estimate

after every number of inputs.

Figure A.15 depicts these alphabet-wise metrics for the standard degrees of freedom

estimate across both fixed and non-stationary errors. The most direct point of comparison

for alphabet accuracy in Figures A.15a and A.15d is error-free accuracy with respect to the

entire string, as depicted in Figures 3.5b and 3.5e. In the fixed error case, both string-wise

and alphabet-wise metrics capture similar behavior. In the case of non-stationary errors,

measuring alphabet accuracy appears to penalize larger numbers of degrees of freedom

less harshly than accuracy with respect to the entire string. Intuitively, alphabet accuracy

accounts for the fact that early characters may have converged successfully to the target while

later characters are still being refined, which is a subtlety that is ignored when assessing

error-free accuracy at the string level.

Alphabet deviation and normalized alphabet deviation depict similar trends to one

another; we focus on normalized alphabet deviation due to its attractive normalization

between different degrees of freedom. When comparing normalized alphabet deviation in

Figures A.15c and A.15f to string-wise dictionary distance in Figures 3.5c and 3.5f, we can

185

observe characteristics of normalized alphabet deviation not captured by dictionary distance.

In particular, since posterior matching operates through bisections of the entire dictionary, it

is able to quickly refine a configuration’s equivalent point on the unit interval to the correct

numerical neighborhood, regardless of number of degrees of freedom (see Section A.3.1).

This is reflected in dictionary distance by the clustering of all degrees of freedom at low

deviation values in Figures 3.5c and 3.5f. Unlike dictionary distance, normalized absolute

deviation accounts for individual convergence within each alphabet, which may still be large

for later characters even if posterior matching has converged well when measured by overall

dictionary distance. As can be observed in Figures A.15c and A.15f, larger numbers of

degrees of freedom require more inputs to refine character selection within a larger number

of alphabets. Similar trends as these can be observed when using conservative degrees of

freedom estimates in Figure A.16 and comparing to the corresponding string-wise metrics

in Figure A.14.

186

Alphabet accuracy Alphabet deviation Normalized alphabet deviation

Fi
xe

d
(1

0%
)e

rr
or

(a) (b) (c)

N
on

-s
ta

tio
na

ry
er

ro
rs

(d) (e) (f)

Figure A.15: Alphabet-wise performance metrics as a function of number of inputs and
dictionary size across both fixed and non-stationary input errors, with standard degrees of
freedom estimates. Alphabet accuracy (a,d) measures the fraction of error-free guessed
characters, plotted at its mean value with a 95% Wilson confidence interval. Alphabet
deviation (b,e) measures the sum of absolute deviations within each alphabet of a configu-
ration guess, plotted at its mean value with error bars depicting 95% bootstrap confidence
intervals over 10,000 samples (separate resampling for every number of inputs). Normalized
alphabet deviation (c,f) calculates alphabet deviation, but normalizes each value by the
number of degrees of freedom, plotted at its mean value with error bars depicting 95%
bootstrap confidence intervals over 10,000 samples (separate resampling for every number
of inputs).

187

Alphabet accuracy Alphabet deviation Normalized alphabet deviation

Fi
xe

d
(1

0%
)e

rr
or

(a) (b) (c)

N
on

-s
ta

tio
na

ry
er

ro
rs

(d) (e) (f)

Figure A.16: Alphabet-wise performance metrics as a function of number of inputs and
dictionary size across both fixed and non-stationary input errors, with conservative degrees
of freedom estimates. All plotted metrics and error bars are otherwise identical to those in
Figure A.15.

188

APPENDIX B

EXPERIMENTAL DETAILS IN TUPLEWISE SIMILARITY LEARNING

B.1 Experimental Details

For each of the human-subject experiments, µ was set to 0.1 and d was set to 4 per the hyper-

parameter search shown in Figure B.1a. The validation set for this search was an additional

500 heldout triplets from the Food10k dataset. In the synthetic experiments provided, µ was

set to 0.5 and d was set to 2 to match the dimensionality of the generating distribution. The

stochastic oracle had a high noise level, inverting 33% of tuple responses. Higher tuple sizes

were strongly correlated with both higher performance and higher robustness to error (even

when normalized by the effective number of pairwise queries), indicating performance gains

for InfoTuple that are not simply due to increasing tuple sizes. A heuristic was used to pick

a number of samples for the Monte Carlo estimation of the mutual information, with N
10

samples being used in practice.

(a) (b)

Figure B.1: Supplementary experiments for tuplewise similarity learning. (a) Hyperparame-
ter sweep for Food10k dataset. Experimental values of d = 4 and µ = 0.1 were found to be
the most effective on a held-out validation set of triplets. (b) Synthetic experiment results
using an oracle with Gaussian noise. Results were broadly consistent with those of the
Plackett-Luce oracle in spite of the mismatch between the oracle noise and the embedding.

189

Figure 5.3c in Chapter 5 shows empirical performance for query selection algorithms

on predicting labels from held out triplet queries in the Mechanical Turk dataset described.

Experimental horizons for human subject experiments were chosen based on estimates of

the initial steps of convergence and had to be limited due to high experimental costs. Turk

subjects were presented with queries in batches of 25, with one repeated tuple across the

batch as a test for validity. If the repeat query was not answered the same way by the

user both times it was asked the batch was discarded. Order effects were controlled for by

shuffling queries prior to presenting them to users for labeling, ensuring that any queries

presented to multiple users would appear in different orders and that the test queries would

also appear differently each time.

B.2 Oracle Details

Two different models of oracle noise were used in our synthetic experiments, Plackett-Luce

noise and Gaussian noise. These models were chosen to be different from the one we

use to estimate mutual information in order to demonstrate the robustness of our method.

In Chapter 5 we describe the selection process used by the Plackett-Luce oracle noise,

which works by assigning latent scores to objects on the basis of their distances in some

synthetic “ground truth” embedding space. The Gaussian noise model, instead of applying

noise directly at the level of the ranking responses, applies noise at the level of the oracle’s

representation of the “ground truth” embedding by adding Gaussian noise to the coordinates

of each point drawn from the “ground truth” embedding before imputing a ranking from

distances in the oracle’s noisy interpretation of the space. For the Plackett-Luce error model

results shown in Chapter 5, 33% of individual rankings were inverted.

B.3 Computational Complexity

The computational complexity of the embedding calculation is that of a typical MDS

algorithm- for any M ∈ Rd×N an approximate solution can be found in O(N) for d < N

190

[211]. Our case has an N far greater than d while still being of manageable size, allowing

for a fast linear-time approximation.

With respect to the entropy calculation itself, the inner loop computing the mutual

information from a given tuple is computable in O(Nfk
2). However, the computational

complexity for a given algorithm iteration is dominated by the O(ω
(
N
k−1

)
) cost of generating

and iterating over large pools of candidate tuples, meaning that the run-time is heavily

dependent on the choice of the sampling rate ω and distance sample size Nf , and the

question of how to efficiently estimate similar mutual information quantities without the use

of Monte Carlo methods remains open.

191

APPENDIX C

PROOFS AND ADDITIONAL DETAILS IN PAIRWISE SEARCH

First, we begin with an additional lemma:

Lemma C.0.1. Let Xi be a marginal distribution of W . The density of Xi is then

pXi|yi(x) =
1

σi
pZi

(
Xi − E[Xi|yi]

σi

)
≤ 1

σi
,

where σi =
√

E[(Xi − E[Xi|yi])2|yi] and Zi = Xi−E[Xi|yi]
σi

.

Proof. Since Xi is a marginal of a log-concave distribution, Xi is also log-concave. Further-

more, Zi is a zero-mean, unit-variance (i.e., isotropic) log-concave random variable with

density pZi(z). Then Lemma C.0.1 follows because one-dimensional isotropic log-concave

densities are upper bounded by one [24].

A direct consequence of Lemma C.0.1 is that for any a > 0,

P (|Xi| < a | yi) =

∫ a

−a
pXi|yi(x)dx

≤ 1

σi

∫ a

−a
dx ≤ 2a

σi

implying that

P (|Xi| ≥ a | yi) ≥ 1− 2a

σi
. (C.1)

192

C.1 Proof of Lemma 6.3.1

Proof. Letting ΣW denote the d × d covariance matrix of random vector W ∈ Rd, from

Theorem 8.6.5 in [27], we have the upper bound

h(W) ≤ 1

2
log2((2πe)d|ΣW |). (C.2)

Now assume the distribution PW of W is log-concave, let W1,W2 ∼ PW be i.i.d. and let

W̃ := W1 −W2. Let pW̃ and pW denote the respective densities of W̃ and W . We have by

Proposition 3.5 of [25], for all z ∈ Rd,

pW̃ (z) = pW (z) ? pW (−z), (C.3)

where ? is the convolution operator, is also log-concave. Since covariances add for indepen-

dent random vectors, ΣW̃ = 2ΣW .

By Theorem 4 of [212], for d ≥ 2

h(W̃) ≥ d

2
log2

|ΣW̃ |
1/d

c(d)
,

where c(d) = e2d2/(4
√

2(d+ 2)). From Corollary 2.3 of [213],

h(W̃) = h(W1 −W2) ≤ h(W) + d log2 e,

which implies

h(W) ≥ h(W̃)− d log2 e ≥
d

2
log2

|ΣW̃ |
1/d

c(d)
− d log2 e

≥ d

2
log2

|2ΣW |1/d

e2c(d)
(C.4)

The result follows combining eq. (C.2) and eq. (C.4).

193

C.2 Proof of Theorem 6.3.2

EY i [hi(W)] = h0(W)−
i∑

j=1

I(W ;Yj|Y j−1) (C.5)

≥ −i (C.6)

from the chain rule for mutual information with h0(W) = 0 and I(W ;Yj|Y j−1) ≤ 1 [27],

and

EY i [hi(W)] ≤ 1

2
EY i log2((2πe)d|ΣW |Y i |) (C.7)

≤ 1

2
log2((2πe)d|EY i ΣW |Y i |) (C.8)

from Lemma 6.3.1 with Jensen’s inequality and the concavity of log|A| for any matrix A in

the positive definite cone [159]. Rearranging, we have

2−2i

(2πe)d
≤ |EY i ΣW |Y i | (C.9)

≤
Tr
(
EY i [ΣW |yi]

)d
dd

(C.10)

=
(EW,Y i [‖W − E[W |Y i]‖2

2])d

dd
(C.11)

≤
(EW,Y i [‖W − Ŵi‖2

2])d

dd
(C.12)

where eq. (C.10) is from the AM–GM inequality, eq. (C.11) is due to the linearity of trace

and expectation, and the last inequality is due to that fact that expected value is the MMSE

estimator, from which the MSE lower bound follows.

194

C.3 Proof of Proposition 6.3.3

Proof. Consider the ‘equiprobable’ query scheme, with P (Yi = 1|yi−1) = 1
2

for hyperplane

query given by weights ai, threshold τi, and noise constant k. Letting Xi = aTi W − τi, we

have

I(W ;Yi|yi−1) = H(Yi|yi−1)−H(Yi|yi−1,W)

= H(Yi|yi−1)−H(Yi|yi−1,W,Xi)

since Xi is a deterministic function of W

= H(Yi|yi−1)−H(Yi|yi−1, Xi)

since p(Yi|yi−1,W,Xi) = p(Yi|yi−1, Xi)

= I(Xi;Yi|yi−1).

Revisiting mutual information, we have

I(Xi;Yi|yi−1) = E
[
log2

p(Yi|Xi, y
i−1)

p(Yi|yi−1)

]
(C.13)

= EXi [(1− hb(f(kXi))) | yi−1] (C.14)

= EXi [(1− hb(f(k|Xi|)))|yi−1] (C.15)

195

since 1− hb(f(kXi)) is symmetric. From Markov’s inequality with 1− hb(f(k|Xi|)) being

monotonically increasing, for any a > 0,

≥ (1− hb(f(ka)))P (|X| > a | yi−1) (C.16)

(from eq. (C.1)) ≥ (1− hb(f(ka)))

(
1− 2a

σi

)
(C.17)

=

(
1− hb

(
f

(
kcσi

2

)))
(1− c) (C.18)

by letting a = cσi
2

for any 0 ≤ c ≤ 1

C.4 Proof of Theorem 6.3.4

Entropy Properties: Let h(W |yi) denote the posterior entropy after observing i queries.

With a uniform prior distribution over the hypercube [−1
2
, 1

2
], we have that h(W |y0) = 0

and h(W |yi) ≤ 0 for ∀i since the uniform distribution maximizes entropy over this bounded

space.

After query i, let the eigenvalues of the posterior covariance matrix be denoted in

decreasing order as λ1 ≥ λ2 · · · ≥ λd. In the equiprobable, max-variance scheme, query ai

is in the direction of maximal eigenvector, so the product of the noise constant and query

standard deviation at iteration i is given by k
√
aTi ΣW |yiai = k‖ai‖

√
λ1 ≥ kmin

√
λ1. From

the monotonicity of the mutual information lower bound on equiprobable queries, we have

I(W ;Yi|yi−1) ≥ Lc,kmin(
√
λ1) (C.19)

From rearranging terms in Lemma 6.3.1 along with |ΣW |yi | =
∏d

i=1 λi, we have

22h(W |yi)

(2πe)d
≤ |ΣW |yi | =

d∏
i=1

λi ≤ λd1 (C.20)

=⇒ λ1 ≥
2

2h(W |yi)
d

2πe
(C.21)

196

For compactness of notation, let

L̃c,kmin(h) = Lc,kmin

(
2
h
d

√
2πe

)
(C.22)

Since Lc,kmin is monotonically increasing, we have

I(W ;Yi|yi−1) ≥ L̃c,kmin(h(W |yi)) (C.23)

Combined with the 1 bit upper bound on mutual information along with I(W ;Yi|yi−1) =

h(W |yi−1)− EYi|yi−1 [h(W |yi)], we have

h(W |yi−1)− 1 ≤ EYi|yi−1 [h(W |yi)] (C.24)

≤ h(W |yi−1)− L̃c,kmin(h(W |yi−1))

To bound the entropy deviations from one measurement to the next, we need the follow-

ing lemma:

Lemma C.4.1. For the equiprobable query scheme,

|h(W |yi)− h(W |yi−1)| ≤ γ(d) ∀i ≥ 0

where γ(d) = 8d+ d
2

log2 (2πed) + 1.

The proof of Lemma C.4.1 is highly technical and so we relegate it to the end of the

supplementary materials.

Martingale Properties: We note our martingale argument is similar in style to [38].

Let Zi = −h(W |yi). From the previous section we have Z0 = 0, Zi ≥ 0 ∀i ≥ 0,

|Zi−Zi−1| ≤ γ(d) from Lemma C.4.1, andZi−1+L̃c,kmin(−Zi−1) ≤ EZi|yi−1 [Zi] ≤ Zi−1+1.

197

Since Zi−1 is a deterministic function of yi−1 ∀i along with the law of total expectation,

E[Zi|Z0, . . . , Zi−1] = EY i−1|Z0,...,Zi−1
E[Zi|Z0, . . . , Zi−1, y

i−1]

= EY i−1|Z0,...,Zi−1
E[Zi|yi−1]

which implies

E[Zi|Zi−1] ≥ EY i−1|Z0,...,Zi−1
[Zi−1 + L̃c,kmin(−Zi−1)]

= Zi−1 + L̃c,kmin(−Zi−1)

and

E[Zi|Z0, . . . , Zi−1] ≤ EY i−1|Z0,...,Zi−1
[Zi−1 + 1]

= Zi−1 + 1

Since L̃c,kmin(−Zi−1) > 0, we have E[Zi|Zi−1] ≥ Zi−1. For all i ≥ 0, |Zi| < ∞ since

|Zi| = |Z0 +
∑i

j=1 Zj − Zj−1| ≤
∑i

j=1|Zj − Zj−1| ≤ iγ(d) < ∞. Therefore, Zi is a

submartingale.

Let τ > 0 define a stopping threshold and corresponding stopping time T = min{i :

Zi ≥ τ} Considering E[Zi|Zi−1] ≤ Zi−1 + 1 and taking the expectation over Zi−1 on both

sides and expanding with the tower rule, we have

E[E[Zi|Zi−1]] ≤ E[Zi−1] + 1

E[Zi] ≤ EE[Zi−1|Zi−2] + 1

E[Zi] ≤ E[Zi−2] + 1 + 1

. . .

E[Zi] ≤ i

198

which implies

T ≥ E[ZT] ≥ τ

where the last inequality follows by definition, so E[T] ≥ τ . Note that this is true for any

query selection scheme since mutual information is always upper bounded by 1 bit.

To lower bound the expected stopping time, observe L̃c,kmin(−z) is monotonically de-

creasing in z, and Zi ≤ τ for i < T , so we have in this range that L̃c,kmin(−Zi) > L̃c,kmin(−τ).

Using this fact, we construct a separate submartingale that equals Zi up to and including the

stopping time and has the same properties listed above. Specifically, let

Ui =

Zi i ≤ T

Ui−1 + L̃c,kmin(−τ) i > T.

(C.25)

Clearly for i ≤ T , Ui = Zi, and if TU is defined as TU = min{i : Ui ≥ τ}, by

observation TU = T . Ui also satisfies |Ui − Ui−1| < γ(d), and Ui−1 + L̃c,kmin(−τ) ≤

E[Ui|U i−1] ≤ Ui−1 + 1.

We have

E[Ui|U i−1] ≥ Ui−1 + L̃c,kmin(−τ) (C.26)

E[Ui|U i−1]

L̃c,kmin(−τ)
≥ Ui−1

L̃c,kmin(−τ)
+ 1 (C.27)

E[Ui|U i−1]

L̃c,kmin(−τ)
− i ≥ Ui−1

L̃c,kmin(−τ)
− (i− 1) (C.28)

We then have a submartingale given by U (sub)
i = Ui

L̃c,kmin (−τ)
− i.

Assume for the time being that the optional stopping theorem can be applied to this

submartingale (proved in the sequel)—for any stopping time S satisfying S ≤ T , E[U sub
S] ≤

E[U sub
T]. Specifically, if τS is a stopping threshold satisfying τS ≤ τ such that S = min{i :

199

Ui ≥ τS}, then (for brevity, letting l(u) = L̃c,kmin(−u))

E[US]

l(τ)
− E[S] ≤ E[UT]

l(τ)
− E[T] (C.29)

which implies

E[US]

l(τS)
− E[S] =

l(τ)

l(τS)

[
E[US]

l(τ)
− E[S]

]
−(

1− l(τ)

l(τS)

)
E[S]

(C.30)

≤ l(τ)

l(τS)

[
E[UT]

l(τ)
− E[T]

]
−
(

1− l(τ)

l(τS)

)
E[S] (C.31)

More generally, let ∆ > 0 be given and set stopping threshold τi = i∆, with corresponding

stopping time Ti. Define Pi =
UTi
l(τi)
− Ti. Letting ri = l(τi)

l(τi−1)
and letting T = Ti and

S = Ti−1, by rearranging the above we have

E[Pi] ≥
E[Pi−1]

ri
+

(1− ri)
ri

E[Ti−1] (C.32)

Noting that E[T0] = 0 since a threshold of τ0 results in stopping at T0 = 0 and E[P0] =

UT0
l(τ0)
− E[T0] = 0, we continue this bound recursively

E[Pi] ≥
E[Pi−2]

riri−1

+
(1− ri−1)

riri−1

E[Ti−2]

+
(1− ri)
ri

E[Ti−1] . . .

=
i−1∑
j=1

1− rj+1∏i
k=j+1 rk

E[Tj]

=
i−1∑
j=1

l(τj)− l(τj+1)

l(τi)
E[Tj]

200

since
∏i

k=j+1 rk = l(τi)
l(τi−1)

l(τi−1)
l(τi−2)

. . .
l(τj+1)

l(τj)
= l(τi)

l(τj)

=
1

l(τi)

i−1∑
j=1

l(j∆)− l(j∆ + ∆)

∆
∆E[Tj]

≥ 1

l(τi)

i−1∑
j=1

l(τj)− l(τj + ∆)

∆
τj∆

since E[Tj] ≥ τj = j∆. Now let τ > 0 be given (with corresponding stopping time defined

as T) and let ∆→ 0, choosing i appropriately such that τ = τi = i∆

≥ − 1

l(τ)

∫ τ

0

(
d

dx
l(x)

)
xdx

=
1

l(τ)

∫ τ

0

l(x)dx− τ

=⇒ E[UT]

l(τ)
− E[T] ≥ 1

l(τ)

∫ τ

0

l(x)dx− τ

=⇒ E[T] ≤ τ +
E[UT]

l(τ)
− 1

l(τ)

∫ τ

0

l(x)dx

≤ τ +
τ + 1

l(τ)
− 1

l(τ)

∫ τ

0

l(x)dx

since E[UT] = E[E[UT |UT−1]] ≤ E[UT−1] + 1 ≤ τ + 1

All together we have

τ ≤ E[T] ≤ τ +
τ + 1

l(τ)
− 1

l(τ)

∫ τ

0

l(x)dx (C.33)

Now, suppose we’d like to stop the algorithm when the posterior covariance determinant

crosses below a threshold, corresponding to a low posterior volume. Denote this threshold

as ε, and define the stopping time Tε as min{i : |ΣW |yi|
1
d < ε}. By rearranging the upper

201

bound in Lemma 6.3.1 we have the necessary condition

hi(W) ≤ d

2
log2(2πeε) (C.34)

Letting τ1 = d
2

log2(1
2πeε

) be the entropic stopping threshold with stopping time T1, from

eq. (C.33) this results in (with E[Tε] ≥ E[T1] since this is a necessary condition)

E[Tε] ≥ E[T1] ≥ τ1 (C.35)

Similarly, by rearranging the lower bound in Lemma 6.3.1 we observe that a sufficient

condition for this stopping criterion is

hi(W) ≤ d

2
log2

2ε

e2cd
(C.36)

where cd = (e2d2)/(4
√

2(d+2)). Letting τ2 = d
2

log2
e2cd
2ε

be the entropic stopping threshold

with stopping time T2, we have from eq. (C.33) (with E[Tε] ≤ E[T2] since this is only a

sufficient condition):

E[Tε] ≤ E[T2] ≤ τ2 +
τ2 + 1

l(τ2)
− 1

l(τ2)

∫ τ2

0

l(x)dx (C.37)

Combining these, we have the theorem result.

Verifying Optional Stopping Theorem: Consider a submartingale of the form Pi = Qi
C
−i

for some C > 0, where Qi is also a submartingale satisfying Qi = 0, Qi ≥ 0 for i ≥ 0, and

202

|Qi+1 −Qi| ≤ B for some B > C > 0. This implies

|Pi − Pi−1| =
∣∣∣∣Qi

C
− i− Qi−1

C
+ (i− 1)

∣∣∣∣
=
|Qi −Qi−1 − C|

C

≤ |Qi −Qi−1|
C

+ 1

≤ B

C
+ 1 =: B′ <∞

Let stopping time TQ be defined as min{i : Qi > τ} for some threshold 0 < τ <∞. This

implies a stopping time on Pi given by TP = min{i : Pi >
τ
C
− i}, with T := TQ = TP .

We have from Theorem 5.2.6 of [214] that PT∧i and QT∧i are also submartingales.

Consider supEQ+
T∧i = supEQT∧i ≤ τ +B <∞, by definition. From Theorem 5.2.8

of [214], as i→∞, QT∧i converges a.s. to a limit Q with E |Q| <∞ (and hence |Q| <∞

a.s.). This also implies |QT∧i|
a.s.→ |Q|.

Similarly, supEP+
T∧i = supE

[{
QT∧i
C
− (T ∧ i)

}+
]
≤ supE

[
Q+
T∧i
C

]
≤ τ+B

C
<∞, so

as i→∞, PT∧i converges a.s. to a limit P with E |P | <∞ (and hence |P | <∞ a.s.). This

also implies |PT∧i|
a.s.→ |P |.

We have

T ∧ i =

∣∣∣∣(T ∧ i)− QT∧i

C
+
QT∧i

C

∣∣∣∣
≤
∣∣∣∣(T ∧ i)− QT∧i

C

∣∣∣∣+
|QT∧i|
C

= |PT∧i|+
|QT∧i|
C

Since the right side converges a.s. to a limit |P | + |Q|
C

=: L and L < ∞ a.s., for all large

enough i, T ∧ i < L a.s. which implies T < L a.s. and therefore E[T] <∞. Combining this

fact with |Pi+1 − Pi| ≤ B′, Theorem 5.7.5 of [214] gives that PT∧i is uniformly integrable.

Then, from Theorem 5.7.4 of [214], for any stopping time L ≤ T , E[PL] ≤ E[PT].

203

C.5 Proof of Theorem 6.3.5

To lower bound the complexity of Tε, we substitute the definition of τ1 into eq. (C.35), which

is true for any query scheme:

E[Tε] ≥
d

2
log2

(
1

2πeε

)
(C.38)

=⇒ E[Tε] = Ω

(
d log

1

ε

)
(C.39)

To upper bound the complexity of Tε, note that τ2 − 1
l(τ2)

∫ τ2
0
l(x)dx ≤ 0 from the mean

value theorem, so E[Tε] ≤ τ2+1
l(τ2)

. Also note that

Lc,k(σ) =

(
1− hb

(
f

(
ckσ

2

)))
(1− c)

≥
(

1− sech

(
ckσ

4

))
(1− c) (C.40)

≥ c2k2σ2

32 + c2k2σ2
(1− c) (C.41)

where eq. (C.40) is from hb(p) ≤ 2
√
p(1− p), and eq. (C.41) is from sech(x) ≤ 2

2+x2
.

Plugging in the definition for τ2 into l(τ2) we have

l(τ2) = Lc,kmin

(
2
−τ2
d

√
2πe

)
= Lc,kmin

(√
ε

πe3cd

)
(C.42)

so

l(τ2) ≥ c2k2
min

32πe3cd
1
ε

+ c2k2
min

(1− c) (C.43)

which implies

E[Tε] ≤

(
d
2

log2
e2cd
2ε

+ 1
) (

32πe3cd
1
ε

+ c2k2
min

)
(1− c)c2k2

min
(C.44)

=⇒ E[Tε] = O

(
d log

1

ε
+

(
1

εk2
min

)
d2 log

1

ε

)
(C.45)

204

C.6 Proof of Proposition 6.3.6

Proof. We first bound p1 := P (Y = 1). Recall that for some fixed k, f(x) = (1 + e−kx)−1.

First note that

∫ b

a

f(x)dx =

∫ b

a

1

k

kekx

1 + ekx
dx

=
1

k

∫ b

a

u′

u
dx =

1

k

∫ u(b)

u(a)

1

u
du

=
1

k
ln

1 + ekb

1 + eka
.

We have that P (Y = 1) = E[P (Y = 1|X = x)] = E[f(x)]. Note that ∀x, (1 + e−kx) ≤ 1.

Then,

p1 = E[f(x)] =

∫
f(x)pX(x)dx

=

∫
x≤0

f(x)pX(x)dx+

∫
x>0

f(x)pX(x)dx

≤ 1

σX

∫ 0

−∞
f(x)dx+

∫
x>0

f(x)pX(x)dx

≤ 1

σXk
ln

1 + ek0

1
+

∫
x>0

1pX(x)dx

≤ ln 2

σXk
+ P (X > 0) ≤ ln 2

σXk
+ 1− 1

e
,

where we use pX(x) ≤ 1/σX and the final inequality follows from P (X ≤ 0) ≥ 1
e

for

zero-mean log-concave X [24]. Using a similar argument it can be shown that E[f(x)] ≥

1/e− ln 2/(σXk). Combining these, we have

1

e
− ln 2

σXk
≤ p1 ≤ 1−

(
1

e
− ln 2

σXk

)
. (C.46)

Now we turn to lower bounding I(X;Y) := H(Y)−H(Y |X). The second term can

205

be written

H(Y |X) = EX H(Y |X = x)

=

∫ ∞
−∞

hb(f(x))pX(x)dx

≤ 1

σX

∫ ∞
−∞

hb(f(x))dx. (C.47)

where the inequality follows from Lemma C.0.1. Since

H(Y |X = x)

= −f(x) log2 f(x)− (1− f(x)) log2(1− f(x))

=
1

1 + e−kx
log2(1 + e−kx)

+
e−kx

1 + e−kx
log2((1 + e−kx)/e−kx)

=
1 + e−kx

1 + e−kx
log2(1 + e−kx)

− e−kx

1 + e−kx
log2(e−kx)

= log2(1 + e−kx) +
kxe−kx log2(e)

1 + e−kx
,

which is an even function, we have (omitting details of the integration)

H(Y |X) ≤ 2

σX

∫ ∞
0

log2(1 + e−kx)

+
kxe−kx log2(e)

1 + e−kx
dx

=
π2(log2 e)

3kσX
(C.48)

For the second term, note that H(Y = 1) = hb(p1). The binary entropy function is

symmetric about, and monotonically decreasing from p = 1/2. Therefore,

H(Y) = hb(p1) ≥ hb

(
1

e
− ln 2

σXk

)
(C.49)

206

Combining eq. (C.48) and eq. (C.49) gives the desired result.

C.7 Proof of Lemma C.4.1

Proof. Since p(W |yi) is log-concave, and by Jensen’s inequality,

−h(W |yi) = EW |yi [log2 p(W |yi)]

≤ log2 p(E[W |yi]|yi)

≤ log2 sup
w
p(w|yi).

Without loss of generality, we may suppose E[W |yi] = 0, and let V = Σ
− 1

2

W |yiW and W ∼

PW |yi , such that E[V] = 0 and E[V V T] = Σ
− 1

2

W |yi E[WW T]Σ
− 1

2

W |yi = Σ
− 1

2

W |yiΣW |yiΣ
− 1

2

W |yi = I

and therefore V is isotropic. From [215] we have that pV (v) ≤ 28dd
d
2 . From the density of

a linear transformation of a random variable we have

pW |yi(w) =
pV (Σ

− 1
2

W |yiw)

|Σ
1
2

W |yi |
≤ 28dd

d
2

|ΣW |yi |
1
2

.

Therefore, for our query strategy we have (with fi(W) denoting the logistic response model

for the query at iteration i)

p(w|yi) = p(w|yi = y, yi−1)

=
fi(W)y + (1− fi(W))(1− y)

p(yi = y|yi−1)
p(W |yi−1)

≤ (1)y + (1− (0))(1− y)

p(yi = y|yi−1)
p(W |yi−1)

=
1

p(yi = y|yi−1)
p(W |yi−1)

≤ 1

p(yi = y|yi−1)

28dd
d
2

|ΣW |yi−1| 12

=⇒ sup
w
p(w|yi) ≤ 1

p(yi = y|yi−1)

28dd
d
2

|ΣW |yi−1| 12
,

207

which implies

log2 sup
w
p(w|yi) ≤ 8d+

d

2
log2 d−

1

2
log2|ΣW |yi−1|

− log2(p(yi = y|yi−1)),

and hence

h(W |yi) ≥ 1

2
log2|ΣW |yi−1|+ log2(p(yi = y|yi−1))

−
(

8d+
d

2
log2 d

)
≥ 1

2
log2((2πe)d|ΣW |yi−1|)

− 1

2
log2(2πe)d + log2(p(yi = y|yi−1))

−
(

8d+
d

2
log2 d

)
≥ h(W |yi−1) + log2(p(yi = y|yi−1))

−
(

8d+
d

2
log2(2πed)

)
from eq. (C.2).

For equiprobable queries p(yi = y|yi−1) = 1/2, and so we have

h(W |yi−1)− h(W |yi) ≤ γ(d). (C.50)

where γ(d) = 8d+ d
2

log2(2πed) + 1.

To obtain the other direction, let hi−1
y = h(W |Yi = y, yi−1), ym = arg miny∈{0,1} h

i−1
y ,

yM = 1− ym. Note that hi−1
yM
≥ hi−1

ym . We have

h(W |Yi, yi−1) =
1

2
hi−1
m +

1

2
hi−1
M

≥ 1

2
(h(W |yi−1)− γ(d)) +

1

2
hi−1
M

≥ 1

2
(h(W |yi−1)− γ(d)) +

1

2
h(W |yi)

208

where the first inequality follows from eq. (C.50) and the second inequality follows

from the definition of hM . From the non-negativity of mutual information, we have that

h(W |Yi, yi−1) ≤ h(W |yi−1), implying

h(W |yi−1) ≥ 1

2
(h(W |yi−1)− γ(d)) +

1

2
h(W |yi)

h(W |yi−1)− h(W |yi) ≥ −γ(d) (C.51)

Combining eq. (C.51) with eq. (C.50) we have the desired result.

209

C.8 Additional Experiments

Performance Across Dimensions: Figure C.1 plots MSE against embedding dimension

averaged across all trials at both 20 and 60 queries asked. For all dimensions across all

experiments, the learned Yummly Food-10k embedding was centered and scaled by a

constant amount such that the unit hypercube of user preference points would be contained

in the embedding of items, allowing for a rich pool of pairs to be selected from for any user

point. This scaling constant was heuristically set to
√
d/(3λ̃1/2), where λ̃ is the smallest

eigenvalue of the covariance matrix of embedding items. This scaling is motivated by

setting the smallest variance direction of the embedding to align with the furthest point of

the unit cube at a distance of
√
d from the origin. For each learned embedding, responses

to the Yummly Food-10k training triplets were predicted by selecting the closer of the

two comparison items to the reference item, using the embedding to measure distances.

For a given embedding, we refer to the fraction of incorrectly predicted triplet responses

as the triplet error fraction, which we plot for reference against embedding dimension in

Figure C.2. For all experiments, β = 10−3 and results are averaged over 50 trials.

210

(a) Matched “constant” noise:
20 queries

(b) Matched “normalized”
noise: 20 queries

(c) Matched “decaying” noise:
20 queries

(d) Matched “constant” noise:
60 queries

(e) Matched “normalized”
noise: 60 queries

(f) Matched “decaying” noise:
60 queries

Figure C.1: Mean squared error performance across dimensions at a fixed number of
answered queries, plotted with ± one standard error.

Figure C.2: Triplet error fraction versus embedding dimension.

211

Speed Plot Comparison Figure C.3 plots MSE against cumulative compute time for

matched logistic noise with “normalized” noise constant for d ∈ {4, 7, 12} in a smaller

scale experiment of 60 queries per trial, and 40 trials per dimension. Specifically, MSE

and average cumulative compute time were calculated for each number of queries asked,

and these two values plotted against each other directly in a range up to 600 seconds.

We evaluated all three of our methods (InfoGain, MCMV, EPMV) at various pair pool

downsampling rates of β ∈ {10−3, 10−3.5, 10−4}, as listed in the figure legend next to each

method. Each experiment was run on an Intel Xeon CPU E5-2680 v4 2.40 GHz processor.

(a) d = 4 (b) d = 7 (c) d = 12

Figure C.3: Mean squared error performance against cumulative compute time (s) for
matched, “normalized” logistic noise at various pair downsampling rates. Error bars have
been omitted for visual clarity.

Additional Experimental Results In this section, MSE is evaluated for both matched

and mismatched noise at d ∈ {3, 5, 7, 9, 12} in Figures C.4 to C.8. The model for kpq

on mismatched Gaussian noise is chosen as the maximum-likelihood model (“constant,”

“normalized”, “decaying”) on the training triplets, calculated separately for each embedding

dimension. For all experiments, β = 10−3 and results are averaged over 50 trials.

212

(a) “Constant” model,
matched, d = 3

(b) “Normalized” model,
matched, d = 3

(c) “Decaying” model,
matched, d = 3

(d) “Constant” model, mis-
matched, d = 3

(e) “Normalized” model, mis-
matched, d = 3

(f) “Decaying” model, mis-
matched, d = 3

Figure C.4: Mean squared error performance versus number of queries asked for pairwise
search in 3 dimensions, plotted with± one standard error. All mismatched noise is Gaussian
with a “constant” noise constant.

(a) “Constant” model,
matched, d = 5

(b) “Normalized” model,
matched, d = 5

(c) “Decaying” model,
matched, d = 5

(d) “Constant” model, mis-
matched, d = 5

(e) “Normalized” model, mis-
matched, d = 5

(f) “Decaying” model, mis-
matched, d = 5

Figure C.5: Mean squared error performance versus number of queries asked for pairwise
search in 5 dimensions, plotted with± one standard error. All mismatched noise is Gaussian
with a “normalized” noise constant.

213

(a) “Constant” model,
matched, d = 7

(b) “Normalized” model,
matched, d = 7

(c) “Decaying” model,
matched, d = 7

(d) “Constant” model, mis-
matched, d = 7

(e) “Normalized” model, mis-
matched, d = 7

(f) “Decaying” model, mis-
matched, d = 7

Figure C.6: Mean squared error performance versus number of queries asked for pairwise
search in 7 dimensions, plotted with± one standard error. All mismatched noise is Gaussian
with a “normalized” noise constant.

(a) “Constant” model,
matched, d = 9

(b) “Normalized” model,
matched, d = 9

(c) “Decaying” model,
matched, d = 9

(d) “Constant” model, mis-
matched, d = 9

(e) “Normalized” model, mis-
matched, d = 9

(f) “Decaying” model, mis-
matched, d = 9

Figure C.7: Mean squared error performance versus number of queries asked for pairwise
search in 9 dimensions, plotted with± one standard error. All mismatched noise is Gaussian
with a “normalized” noise constant.

214

(a) “Constant” model,
matched, d = 12

(b) “Normalized” model,
matched, d = 12

(c) “Decaying” model,
matched, d = 12

(d) “Constant” model, mis-
matched, d = 12

(e) “Normalized” model, mis-
matched, d = 12

(f) “Decaying” model, mis-
matched, d = 12

Figure C.8: Mean squared error performance versus number of queries asked for pairwise
search in 12 dimensions, plotted with ± one standard error. All mismatched noise is
Gaussian with a “normalized” noise constant.

215

APPENDIX D

PROOFS AND ADDITIONAL DETAILS IN FEEDBACK CODING FOR ACTIVE

LEARNING

D.1 Proofs of Analytical Results

D.1.1 Proof of Proposition 2.1

Proof. Our proof follows closely to that of [177] for the capacity of the one-bit quantized

Gaussian channel. We start by writing I(L;Y) = H(Y)−H(Y | L), where H denotes the

entropy of a discrete random variable [27]. H(Y) is maximized at 1 bit, when p(Y = 1) =

p(Y = −1) = 0.5. Expanding H(Y | L), we have H(Y | L) = EpL [hb(p(Y = 1 | L))] =

EpL [hb(f(L))].

For distribution pL, consider its symmetrized distribution p̃L(`) = 1
2
pL(`) + 1

2
pL(−`)

and the expectation of any even function e(·) over p̃L(`):

Ep̃L [e(L)] =

∫ ∞
−∞

(
1

2
pL(`) +

1

2
pL(−`)

)
e(`)d`

=
1

2

∫ ∞
−∞

pL(`)e(`)d`+
1

2

∫ ∞
−∞

pL(−`)e(`)d`

=
1

2

∫ ∞
−∞

pL(`)e(`)d`+
1

2

∫ ∞
−∞

pL(`)e(−`)d` change of variables

=
1

2

∫ ∞
−∞

pL(`)e(`)d`+
1

2

∫ ∞
−∞

pL(`)e(`)d` e(`) is even

=
1

2
EpL [e(L)] +

1

2
EpL [e(L)]

= EpL [e(L)]

Observe that hb is symmetric about 0.5, i.e. for x ∈ [−0.5, 0.5], hb(0.5 + x) = hb(0.5− x).

Combining this with the fact that f(`) − 0.5 is an odd function (i.e. f(−`) − 0.5 =

216

−(f(`)− 0.5)), we have

hb(f(−`)) = hb(f(−`)−0.5+0.5) = hb(−(f(`)−0.5)+0.5) = hb((f(`)−0.5)+0.5) = hb(f(`))

and so hb(f(`)) is an even function. Therefore, the conditional entropy H(Y | L) is

equivalent when L is distributed as pL or p̃L, i.e. Ep̃L [hb(f(L))] = EpL [hb(f(L))].

We also have

Ep̃L [f(L)] = Ep̃L [f(L)− 0.5] + 0.5

=

∫ ∞
−∞

(
1

2
pL(`) +

1

2
pL(−`)

)
(f(`)− 0.5)d`+ 0.5

=
1

2

∫ ∞
−∞

pL(`)(f(`)− 0.5)d`+
1

2

∫ ∞
−∞

pL(−`)(f(`)− 0.5)d`+ 0.5

=
1

2

∫ ∞
−∞

pL(`)(f(`)− 0.5)d`+
1

2

∫ ∞
−∞

pL(`)(f(−`)− 0.5)d`+ 0.5 change of variables

=
1

2

∫ ∞
−∞

pL(`)(f(`)− 0.5)d`− 1

2

∫ ∞
−∞

pL(`)(f(`)− 0.5)d`+ 0.5 (f(`)− 0.5) is odd

= 0.5

and so under p̃L, p(Y = 1) = Ep̃L [f(L)] = 0.5 and H(Y) is maximized at 1 bit.

Combining these facts, we have

I(p̃L, f) = 1−Ep̃L [hb(f(L))] = 1−EpL [hb(f(L))] ≥ hb(EpL [f(L)])−EpL [hb(f(L))] = I(pL, f)

and so symmetrizing a distribution can only increase I(L;Y). Furthermore, since `2 is

even we have Ep̃L [L2] = EpL [L2]. Therefore, when evaluating the capacity of channel with

transition probability f under power constraint P , we only consider symmetric distribu-

tions since for every pL ∈ CP there exists a symmetric distribution p̃L ∈ CP satisfying

I(p̃L, f) ≥ I(pL, f). We solve for the capacity-achieving distribution over the set of

217

symmetric distributions in CP :

p∗L = arg max
EpL [L2]≤P
pL(`)=pL(−`)

I(pL, f) (D.1)

= arg max
EpL [L2]≤P
pL(`)=pL(−`)

1− EpL [hb(f(L))]

= arg min
EpL [L2]≤P
pL(`)=pL(−`)

EpL [hb(f(L))] (D.2)

Since hb(f(`)) is even, hb(f(`)) = hb(f(|`|)) = hb(f(
√
`2)). Omitting calculations, we

have
d2

du2
hb(f(

√
u)) = (log2 e)

tanh(
√
u

2
) sech2(

√
u

2
)

16
√
u

which is non-negative for u > 0 and therefore hb(f(
√
u)) (which is continuous on u ≥ 0) is

convex on u ≥ 0. We then have

EpL [hb(f(L))] = EpL
[
hb
(
f
(√

L2
))] (a)

≥ hb

(
f
(√

EpL [L2]
)) (b)

≥ hb
(
f
(√

P
))

where Jensen’s inequality is used in (a) [27], with equality if and only if L2 is constant,

and (b) results from the power constraint EpL [L2] ≤ P and the fact that hb(f(
√
u)) is

monotonically decreasing for u ≥ 0. For symmetric pL, equality in (a) is achieved if

pL = Bt for some t > 0. By setting t =
√
P , equality in (b) is also achieved, and so B√P

minimizes eq. (D.2) (and therefore maximizes eq. (D.1)). The maximum value in eq. (D.1),

which is equal to capacity C, is then

I(B√P , f) = 1−EB√P [hb(f(L))] = 1− 1

2
hb(f(

√
P))− 1

2
hb(f(−

√
P)) = 1−hb(f(

√
P)).

218

D.1.2 Proof of Proposition 2.2

Proof. Since pθ is log-concave, then pθ|Ln−1(θ) ∝ pθ(θ)
∏n−1

i=1 p(Y = yi | xi, θ) is also

log-concave since it is the product of log-concave functions. Since marginals of log-concave

distributions are log-concave, Ln = xTnθ is log-concave for any xn under the distribution

pθ|Ln−1. However, we know from Proposition 2.1 that p∗L for logistic regression is a sum of

mass points, which is not log-concave. Therefore no xn exists which can induce p∗L from

h.

D.1.3 Proof of Theorem 3.1

Proof. In the following, suppose that pL ∈ CP , and let HpL(Y) = hb(EpL [f(L)]) and

HpL(Y | L) = EpL [hb(f(L))]. f(`) is K1-Lipschitz, where K1 = 0.25, and hb(f(`)) is

K2-Lipschitz, where K2 ≈ 0.32.

|I(pL, f)− I(Bt, f)| = |HpL(Y)−HpL(Y | L)− (HBt(Y)−HBt(Y | L))|

≤ |HpL(Y)−HBt(Y))|+ |HpL(Y | L)−HBt(Y | L)|

= |hb(EpL [f(L)])− hb(EBt [f(L)])|+
∣∣∣∣∫
`

hb(f(`))pL(`)d`−
∫
`

hb(f(`))Bt(`)d`

∣∣∣∣
Assume that there exists ε ∈ (0, 0.5) such that ε ≤ EpL [f(L)] ≤ 1− ε. For ` ∈ (ε, 1− ε),

hb is log2
1−ε
ε

-Lipschitz. Since ε < EpL [f(L)] < 1 − ε by assumption and Bt satisfies

ε < EBt [f(L)] < 1− ε since EBt [f(L)] = 0.5, we have

|hb(EpL [f(L)])− hb(EBt [f(L)])| ≤ log2

(1− ε
ε

)
|EpL [f(L)]− EBt [f(L)]|

= log2

(1− ε
ε

)∣∣∣∣∫
`

f(`)pL(`)d`−
∫
`

f(`)Bt(`)d`

∣∣∣∣
which implies

|I(pL, f)−I(Bt, f)| ≤ log2

(1− ε
ε

)∣∣∣∣∫
`

f(`)pL(`)d`−
∫
`

f(`)Bt(`)d`

∣∣∣∣+∣∣∣∣∫
`

hb(f(`))pL(`)d`−
∫
`

hb(f(`))Bt(`)d`

∣∣∣∣
(D.3)

219

To continue, we use the following result from [179]: defining P1(R) := {µ′ : Eµ′ [|L|] <

∞}, for any µ, ν ∈ P1(R) we have

sup
‖f‖Lip≤1

∫
`

f(`)µ(`)d`−
∫
`

f(`)ν(`)d` = W1(µ, ν).

Therefore, for any K-Lipschitz function g we have that g
K

is 1-Lipschitz and so

∣∣∣∣∫
`

g(`)µ(`)d`−
∫
`

g(`)ν(`)d`

∣∣∣∣ = K

∣∣∣∣∫
`

g(`)

K
µ(`)d`−

∫
`

g(`)

K
ν(`)d`

∣∣∣∣
= K max

{∫
`

g(`)

K
µ(`)d`−

∫
`

g(`)

K
ν(`)d`,

∫
`

−g(`)

K
µ(`)d`−

∫
`

−g(`)

K
ν(`)d`

}
≤ K sup

‖f‖Lip≤1

∫
`

f(`)µ(`)d`−
∫
`

f(`)ν(`)d`

≤ KW1(µ, ν)

≤ KW2(µ, ν) (D.4)

where the last inequality is from W1(µ, ν) ≤ W2(µ, ν) [179].

To apply this inequality to both expressions in eq. (D.3), we first verify that pL, Bt ∈

P1(R). EBt [|L|] = t <∞, and

EpL [|L|] = EpL
[√

L2
] (a)

≤
√

EpL [L2]
(b)

≤
√
P <∞

where (a) results from Jensen’s inequality with the concavity of
√
·, and (b) is since

EpL [L2] ≤ P by assumption and
√
· is monotonically increasing. Applying eq. (D.4)

separately to both terms in eq. (D.3), we have

|I(pL, f)− I(Bt, f)| ≤
(
K1 log2

(1− ε
ε

)
+K2

)
W2(pL, Bt) (D.5)

Finally, we compute a valid value of ε for all pL ∈ CP . First note that f(`) < 0.5 for

` < 0 and f(`) ≥ 0.5 for ` ≥ 0, implying that f(`) ≤ f(|`|) ∀`. Next note that f(
√
u) is

220

concave on u ≥ 0, since for any u, v ∈ [0,∞) and any 0 < φ < 1

f(
√
φu+ (1− φ)v) ≥ f(φ

√
u+ (1− φ)

√
v)

since f is monotonically increasing and
√
· is concave.

≥ φf(
√
u) + (1− φ)f(

√
v)

since f is concave on R≥0. This can be shown by considering

d2

du2
f(u) =

eu

(1 + eu)3
(1− eu) ≤ 0 ∀u ≥ 0

Combining these facts, we have

EpL [f(L)] ≤ EpL [f(|L|)] since f(`) ≤ f(|`|)

= EpL
[
f
(√

L2
)]

≤ f
(√

EpL [L2]
)

from Jensen’s inequality with the concavity of f(
√
·)

≤ f(
√
P)

since f(
√
·) is monotonically increasing, and by assumption EpL [L2] ≤ P . Similarly,

EpL [1− f(L)] ≤ f(
√
P), and therefore we can set ε = 1− f(

√
P). Applying this choice

of ε to eq. (D.5) we have

|I(pL, f)− I(Bt, f)| ≤
(
K1 log2

(
f(
√
P)

1− f(
√
P)

)
+K2

)
W2(pL, Bt)

and can setKP = K1 log2

(
f(
√
P)

1−f(
√
P)

)
+K2 to obtain |I(pL, f)−I(Bt, f)| ≤ KPW2(pL, Bt).

Recall that C = maxpL∈CP I(pL, f) = I(B√P , f) and C̃n = maxx∈Un I(pLn|Ln−1 , f).

By assumption, P is selected such that pLn|Ln−1 ∈ CP for any x ∈ Un, which implies

221

I(pLn|Ln−1 , f) ≤ C for any x ∈ Un and hence C̃n ≤ C. Combining these facts, we have

C̃n−I(pLn|Ln−1 , f) ≤ C−I(pLn|Ln−1 , f) = |I(B√P , f)−I(pLn|Ln−1 , f)| ≤ KPW2(pLn|Ln−1 , B
√
P).

D.1.4 Proof of Proposition 3.2

Proof. Adopting notation from [216], let S denote a finite set of points in R, and w : S → R

a weight vector. Define VorwS (p) = {` : ‖`− p‖2
2 − w(p) ≤ ‖`− q‖2

2 − w(q) ∀q ∈ S}.

Let µ be a given probability measure with density pL. Consider S = {−t, t}, with the

corresponding measure Bt =
∑

p∈S
1
2
δp = 1

2
δ−t + 1

2
δt. Let w∗(−t) = 2tmedpL(L), and

w∗(t) = −2tmedpL(t). We have

Vorw
∗

S (−t) = {` : ‖`+ t‖2
2 − w∗(−t) ≤ ‖`− q‖2

2 − w∗(q) ∀q ∈ {−t, t}}

= {` : ‖`+ t‖2
2 − w∗(−t) ≤ ‖`− t‖2

2 − w∗(t)}

= {` : ‖`+ t‖2
2 − 2tmedpL(L) ≤ ‖`− t‖2

2 + 2tmedpL(L)}

= {` : ` ≤ medpL(L)}

and similarly Vorw
∗

S (t) = {` : ` ≥ medpL(L)}. We have

∫
Vorw

∗
S (−t)

pL(`)d` =

∫
`≤medpL (L)

pL(`)d` =
1

2

and similarly
∫

Vorw
∗

S (t)
pL(`)d` = 1

2
. Therefore, w∗ is adapted to (µ,Bt). By Theorem 2 of

[216], a map Tw∗S : R→ R exists which realizes an optimal transport between µ and Bt. By

222

[216] Theorem 1, we have

W 2
2 (µ,Bt) =

∫
Vorw

∗
S (−t)

‖`+ t‖22 pL(`)d`+

∫
Vorw

∗
S (t)
‖`− t‖22 pL(`)d`

=

∫
`≤medpL (L)

‖`+ t‖22 pL(`)d`+

∫
`≥medpL (L)

‖`− t‖22 pL(`)d`

= EpL [L2] + t2 − 2t

(∫
`≥medpL (L)

` pL(`)d`−
∫
`≤medpL (L)

` pL(`)d`

)
= EpL [L2] + t2 − 2t

(∫
`≥medpL (L)

(`−medpL(L)) pL(`)d`+

∫
`≤medpL (L)

(medpL(L)− `) pL(`)d`

)
= EpL [L2] + t2 − 2t

(∫
`≥medpL (L)

|`−medpL(L)| pL(`)d`+

∫
`≤medpL (L)

|`−medpL(L)| pL(`)d`

)
= EpL [L2] + t2 − 2tEpL [|L−medpL(L)|]

D.1.5 Proof of Corollary 3.2.1

Proof. Let pL ∼ N (µ, σ2). We have EpL [L2] = EpL [L]2 + VarpL(L) = µ2 + σ2, and

EpL [|L−medpL(L)|] = EpL [|L− µ|] = σ
√

2
π

[217]. Hence W 2
2 (pL, Bt) = EpL [L2] + t2−

2tEpL [|L − medpL(L)|] = µ2 + σ2 + t2 − 2
√

2
π
tσ. Completing the square, we have the

desired result.

D.2 Experiment Details

D.2.1 Selection of Power Constraint

Recall that APM-LR minimizes an objective function consisting of a mixture of two terms,

reprinted below:

πn(Ln−1) = arg min
x∈Un

(µTnx)2 +

(√
xTΣnx−

√
2

π
Pn

)2

. (D.6)

The first term in eq. (D.6), which is independent of Pn, encourages x to lie orthogonal to the

hyperplane posterior mean, µn. For all such x satisfying µTnx = 0, we have E[Ln] = µTnx =

223

0 and

E[L2
n] = (µTnx)2 + xTΣnx = xTΣnx ≤ B2λ1(Σn)

where expectations are taken with respect to pLn|Ln−1 . Therefore Pn = B2λ1(Σn) is a valid

power constraint for the set of examples that induce zero-mean input distributions. This set

arguably contains the “best” candidate examples, since if (µTnx)2 � 0 then the objective

in eq. (D.6) will be large. For this reason we set Pn = B2λ1(Σn) in our experiments, as

opposed to the power constraint of B2λ1(µnµ
T
n + Σn) which is valid for all examples but is

loose for examples encouraged by the first term in eq. (D.6).

D.2.2 Dataset Information

In Table D.1 we describe the datasets used in our experiments. Several datasets have multiple

classes: in this case, we select a two-class dataset partition by either grouping individual

classes together into super-classes, or simply training on a subset of the classes. In our

experiments we treat each class partition as its own dataset, and refer to each partition by a

nickname. All datasets except for clouds, cross, and horseshoe come from the UCI Machine

Learning Repository [188]; several UCI datasets have additional citations, which are listed

next to their names.

224

Table D.1: Full dataset information

Nickname Dataset Class partition
of

features
of

examples

vehicle-full Vehicle Silhouettes [218]
Y = −1: ‘saab’ or ‘opel’
Y = 1: ‘bus’ or ‘van’

18 846

vehicle-cars Vehicle Silhouettes [218]
Y = −1: ‘saab’
Y = 1: ‘opel’

18 429

vehicle-transport Vehicle Silhouettes [218]
Y = −1: ‘bus’
Y = 1: ‘van’

18 417

letterDP Letter Recognition
Y = −1: ‘D’
Y = 1: ‘P’

16 1608

letterEF Letter Recognition
Y = −1: ‘E’
Y = 1: ‘F’

16 1543

letterIJ Letter Recognition
Y = −1: ‘I’
Y = 1: ‘J’

16 1502

letterMN Letter Recognition
Y = −1: ‘M’
Y = 1: ‘N’

16 1575

letterUV Letter Recognition
Y = −1: ‘U’
Y = 1: ‘V’

16 1577

letterVY Letter Recognition
Y = −1: ‘V’
Y = 1: ‘Y’

16 1550

austra Australian Credit Approval
Y = −1: ‘0’
Y = 1: ‘1’

14 690

wdbc
Breast Cancer Wisconsin

(Diagnostic)
Y = −1: ‘M’
Y = 1: ‘B’

30 569

clouds
Synth1

[174]
Y = −1: ‘-1’
Y = 1: ‘1’

2 600

cross
Synth2

[174]
Y = −1: ‘-1’
Y = 1: ‘1’

2 600

horseshoe
Synth3

[174]
Y = −1: ‘-1’
Y = 1: ‘1’

2 600

225

D.2.3 Baseline Methods Details

Below we elaborate on the BALD and InfoGain baseline selection methods:

InfoGain We can directly approximate information gain I(θ;Y | Ln−1) with a Monte

Carlo approximation over s samples from pθ|Ln−1 ∼ N (µn,Σn):

I(θ;Y | Ln−1) = hb(Epθ|Ln−1
[f(θTxn)])− Epθ|Ln−1

[hb(f(θTxn))]

≈ hb

(
1

s

s∑
i=1

f(θTi xn)

)
− 1

s

s∑
i=1

hb

(
f(θTi xn)

)
θi ∼ pθ|Ln−1

≈ hb

(
1

s

s∑
i=1

f(θTi xn)

)
− 1

s

s∑
i=1

hb

(
f(θTi xn)

)
θi ∼ N (µn,Σn)

(D.7)

Our “InfoGain” baseline selects the example xn ∈ Un that maximizes the expression in

eq. (D.7), computed in O(sd) time per candidate example.

BALD Consider a probit regression label distribution p(Y = 1 | L) = Φ(L), where Φ

is the standard normal cumulative distribution function. For pL ∼ N (µ, σ2), [171] use a

Taylor expansion in the BALD algorithm to approximate I(pL,Φ(L)) as

I(pL,Φ(L)) ≈ hb

(
Φ

(
µ√
σ2 + 1

))
−
D exp

(
− µ2

2(σ2+D2)

)
√
σ2 +D2

(D.8)

where D =
√

π ln 2
2

. By equalizing derivatives at L = 0, we can approximate f(L) ≈ Φ(kL)

where k =
√

π
8

[180]. Define L̃ = kL and note that L̃ ∼ N (µ̃, σ̃2) for µ̃ = kµ and

226

σ̃2 = k2σ2. We can then use the BALD approximation in eq. (D.8) for logistic regression:

I(pL, f(L)) ≈ I(pL,Φ(kL))

= hb(EpL(Φ(kL)))− EpL(hb(Φ(kL)))

= hb(Ep
L̃
(Φ(L̃)))− Ep

L̃
(hb(Φ(L̃)))

= I(pL̃,Φ(L̃))

≈ hb

(
Φ

(
kµ√

k2σ2 + 1

))
−
D exp

(
− k2µ2

2(k2σ2+D2)

)
√
k2σ2 +D2

Approximating pθ|Ln−1 ∼ N (µn,Σn), we have pLn|Ln−1 ∼ N (µTnxn, x
T
nΣnxn) and so

we can approximate

I(pLn|Ln−1 , f(L)) ≈ hb

(
Φ

(
kµTnxn√

k2xTnΣnxn + 1

))
−
D exp

(
− k2(µTnxn)2

2(k2xTnΣnxn+D2)

)
√
k2xTnΣnxn +D2

(D.9)

where D =
√

π ln 2
2

and k =
√

π
8
. Our “BALD” baseline method selects the example

xn ∈ Un that maximizes the expression in eq. (D.9), computed in O(d2) time per candidate

example.

Summary For completeness, below we summarize all selection methods used in our

experiments. For any method utilizing a normal approximation to the hyperplane posterior,

227

let pθ|Ln−1 ∼ N (µn,Σn). Let θ̂n−1 = A(Ln−1), D =
√

π ln 2
2

, and k =
√

π
8
.

APM-LR: xn = arg min
x∈Un

(µTnx)2 +

(√
xTΣnx−

√
2

π
Pn

)2

(D.10)

Uncertainty: xn = arg min
x∈Un

xT θ̂n−1

Random: Select xn uniformly at random from Un

MaxVar: xn = arg max
x∈Un

xTΣnx

InfoGain: xn = arg max
x∈Un

hb

(
1

s

s∑
i=1

f(θTi xn)

)
− 1

s

s∑
i=1

hb

(
f(θTi xn)

)
θi ∼ N (µn,Σn)

BALD: xn = arg max
x∈Un

hb

(
Φ

(
kµTnxn√

k2xTnΣnxn + 1

))
−
D exp

(
− k2(µTnxn)2

2(k2xTnΣnxn+D2)

)
√
k2xTnΣnxn +D2

D.2.4 Extended Test Accuracy Results

Below we plot average holdout test accuracy against number of queried examples, excluding

one initial seed point selected uniformly at random per class. Error bars show ±1 standard

error over 150 trials per method. For visual clarity, we display different numbers of queried

examples for each dataset.

Figure D.1 shows test accuracy across several two-class partitions of the Vehicle Sil-

houettes dataset (see Table D.1). In vehicle-cars, Uncertainty, InfoGain, and BALD fail

to perform as well as MaxVar, Random, and APM-LR. As noted in [174], there are cases

where Random sampling — or more generally, selection methods that encourage dataset

exploration — can outperform methods that maximize information. In vehicle-cars, it’s pos-

sible that the “exploration” component in APM-LR encourages the selection of satisfactory

examples, which we investigate further in Section D.2.6.

Figure D.2 shows test accuracy across several two-class partitions of the Letter Recogni-

tion dataset. All partitions show similar trends to letterDP, which was included in Chapter 7.

228

(a) vehicle-full (b) vehicle-cars (c) vehicle-transport

Figure D.1: Test accuracy on “Vehicle Silhouettes”

(a) letterDP (b) letterEF (c) letterIJ

(d) letterMN (e) letterUV (f) letterVY

Figure D.2: Test accuracy on “Letter Recognition”

Figure D.3 shows test accuracy across the remaining UCI datasets in Table D.1. On

wdbc, the active methods appear to have an average test accuracy that peaks early and then

gradually decreases. While this behavior merits further investigation, we note that it is

possible in some cases for a selected subset of the full data pool to generalize better than

when training on the entire pool [219].

Figure D.4 shows test accuracy across several synthetic datasets. On clouds and cross,

Uncertainty sampling is outperformed by the other baseline active learning methods, except

MaxVar.

229

(a) austra (b) wdbc

Figure D.3: Miscellaneous UCI datasets

(a) clouds (b) cross (c) horseshoe

Figure D.4: Synthetic datasets

D.2.5 Extended Computational Cost Results

All experiments were run on Intel Xeon Gold 6226 CPUs at 2.7 GHz. In Table D.2 we

present for all datasets the cumulative compute time (in seconds) needed for each method

to select the first 40 examples (excluding seed points). In this first table, we exclude the

compute time needed to retrain the logistic regression model and perform the VariationalEM

posterior update after each example is selected, since these steps are common to all selection

methods. While some methods do not directly utilize the variational posterior in selecting

examples, we perform variational posterior updates for all data selection methods since we

consider the variational posterior to be part of the Bayesian model produced by the training

routine.

Table D.3 isolates the compute time needed for performing VariationalEM at each

input, summed over the first 40 examples. Interestingly, methods which are primarily

focused on data space exploration (MaxVar, Random) require more time for variational

posterior updating than exploitation methods (Uncertainty). Since VariationalEM is an

230

Table D.2: Cumulative selection time: comparison of median cumulative time (s) for each
method to select the first 40 examples (excluding seed points).

APM-LR Uncertainty BALD InfoGain Random MaxVar
vehicle-full 0.173 0.077 2.212 7.166 0.003 0.061
vehicle-cars 0.089 0.039 1.078 3.462 0.002 0.030

vehicle-transport 0.087 0.037 1.036 3.306 0.002 0.029
letterDP 0.336 0.149 4.230 12.755 0.005 0.118
letterEF 0.318 0.143 4.044 12.188 0.005 0.113
letterIJ 0.314 0.139 3.941 11.879 0.004 0.110

letterMN 0.331 0.147 4.170 12.531 0.005 0.117
letterUV 0.330 0.145 4.129 12.429 0.005 0.115
letterVY 0.318 0.143 4.063 12.284 0.004 0.114
austra 0.150 0.063 1.770 5.089 0.003 0.050
wdbc 0.125 0.052 1.480 6.415 0.003 0.042
clouds 0.119 0.053 1.522 2.735 0.002 0.041
cross 0.125 0.053 1.521 2.722 0.002 0.040

horseshoe 0.116 0.053 1.517 2.731 0.002 0.040

iterative procedure that we run with an adaptive stopping rule (with convergence defined

as the relative variational parameter difference falling below 1e−6 between iterations),

it presumably requires more iterations to adjust to significant changes in the posterior

distribution due to variability in examples. Although less accurate of an approximation

than VariationalEM, using a Laplace posterior approximation instead would have a constant

update time per method [187].

Table D.4 depicts the total compute time needed for selecting each example, performing

VariationalEM, and retraining the logistic regression classifier at each iteration, summed

over the first 40 examples. The median time needed for retraining the logistic regression

classifier lies within 0.01 to 0.03 seconds across all methods and datasets, and therefore

contributes only marginally to the total. While the spread of running times is more narrow

than it would be when only evaluating selection time, the same general trend holds that

InfoGain is more expensive than BALD and APM-LR.

231

Table D.3: Cumulative VariationalEM time: comparison of median cumulative time
(s) for each method to perform VariationalEM over the first 40 examples (excluding seed
points).

APM-LR Uncertainty BALD InfoGain Random MaxVar
vehicle-full 10.088 4.540 10.118 9.729 7.469 18.064
vehicle-cars 5.420 4.412 5.605 5.475 3.280 4.558

vehicle-transport 9.609 5.814 9.289 9.083 11.216 21.058
letterDP 7.618 6.412 6.904 6.758 10.694 11.851
letterEF 6.866 5.701 6.320 6.160 11.302 10.755
letterIJ 7.367 5.724 6.924 6.708 10.019 9.846

letterMN 8.190 6.281 7.615 7.375 10.082 13.236
letterUV 8.029 6.556 7.137 7.075 10.746 12.585
letterVY 7.463 5.760 7.142 6.910 8.234 9.975
austra 12.513 6.451 12.009 11.645 8.541 13.580
wdbc 17.966 10.880 14.183 13.874 20.763 29.778
clouds 1.221 1.172 1.156 1.322 3.201 5.318
cross 1.386 2.417 1.474 1.537 3.138 4.453

horseshoe 0.996 0.908 0.863 0.931 0.802 1.208

D.2.6 Failure Mode Analysis

While in many cases APM-LR performs comparably to InfoGain, BALD, and Uncertainty

while outperforming Random and MaxVar, the main exception in our experiments is on

vehicle-cars (Figure D.1b), where APM-LR, Random, and MaxVar outperform InfoGain,

BALD, and Uncertainty. Conceptually, what differentiates these two classes of methods is

that APM-LR, Random, and MaxVar have explicit exploration components to their selection

policies, while InfoGain, BALD, and Uncertainty only seek to directly maximize information

or uncertainty. As we will demonstrate below, on vehicle-cars this difference in exploration

correlates with significant differences in generalization performance.

To isolate the effect of each term in APM-LR (eq. (D.10)) — corresponding to exploita-

tion and exploration — we simulated two pseudo-APM policies where only one of the terms

is active at once. In APM-LR-U, examples are selected that minimize the first term, which

232

Table D.4: Cumulative running time: comparison of median cumulative run time (s)
for each method to select each example, perform VariationalEM, and retrain the logistic
regression classifier over the first 40 examples (excluding seed points).

APM-LR Uncertainty BALD InfoGain Random MaxVar
vehicle-full 10.288 4.637 12.365 16.943 7.493 18.148
vehicle-cars 5.532 4.474 6.727 8.980 3.306 4.616

vehicle-transport 9.721 5.876 10.341 12.419 11.238 21.116
letterDP 7.992 6.583 11.139 19.534 10.730 11.995
letterEF 7.215 5.868 10.396 18.414 11.330 10.887
letterIJ 7.716 5.892 10.896 18.619 10.048 9.981

letterMN 8.561 6.455 11.813 19.991 10.124 13.374
letterUV 8.399 6.724 11.294 19.552 10.781 12.724
letterVY 7.802 5.931 11.233 19.233 8.260 10.118
austra 12.690 6.538 13.801 16.804 8.574 13.655
wdbc 18.130 10.968 15.711 20.323 20.787 29.842
clouds 1.358 1.241 2.706 4.122 3.224 5.385
cross 1.534 2.490 3.028 4.291 3.159 4.515

horseshoe 1.134 0.978 2.405 3.741 0.819 1.264

has an action similar to uncertainty sampling:

APM-LR-U: xn = arg min
x∈Un

(µTnx)2.

In APM-LR-V, examples are selected that minimize the second term, which prefers examples

that probe in directions of high posterior variance:

APM-LR-V: xn = arg min
x∈Un

(√
xTΣnx−

√
2

π
Pn

)2

.

We start in Figure D.5 by plotting generalization performance as in Figure D.1b, with

the addition of APM-LR-U and APM-LR-V. In all plots below, error bars are removed for

visual clarity, and the query horizon spans the entire training sequence (until the training

pool is exhausted). As expected, APM-LR-V performs comparably to MaxVar, since both

methods prefer examples that probe in directions of large posterior variance. Similarly,

APM-LR-U performs comparably to Uncertainty, since both methods minimize distance to

a hyperplane estimate (the former using the posterior mean hyperplane, the latter using a

233

MAP estimate). These results support the hypothesis that it is the exploration component

of APM-LR which leads to improved performance on vehicle-cars over non-exploration

methods, including its own exploitation variant APM-LR-U.

Figure D.5: Test accuracy on vehicle-cars, over expanded method set.

We can explore this hypothesis further by directly evaluating metrics for exploitation

and exploration of each method. To measure exploitation, in Figure D.6, we plot the average

distance from each selected example to the MAP hyperplane estimate. Since distance from

the classifier hyperplane directly corresponds to label uncertainty in logistic regression, this

distance is a direct measure of how often a policy selects uncertain examples. By definition,

Uncertainty begins by querying examples that are closest to the hyperplane estimate, maxi-

mally exploiting the estimate to query examples with the highest model uncertainty. The

remaining methods vary in their levels of initial distance from the hyperplane estimate, but

all eventually query close to their respective estimates, either by design or due to exhausting

the full training pool. Notably, the level of initial distance from the hyperplane corresponds

almost exactly to test accuracy performance: high-performing MaxVar and APM-LR-V

initially query far from their hyperplane estimates, while the poorly performing Uncertainty

queries examples close by.

To measure policy exploration, we use two metrics and plot their average values in

Figure D.7. In the first metric, we measure the Euclidean distance from each unlabeled

234

Figure D.6: Exploitation metric for vehicle-cars: average distance of selected example to
estimated hyperplane. Small distances reflect high levels of policy exploitation since this
reflects examples being queried that are uncertain with respect to the current hyperplane
estimate.

example to its nearest labeled neighbor, and take the maximum such distance over all

unlabeled examples. This quantity measures the worst-case level of isolation of an unlabeled

point to its nearest labeled neighbor, with lower values corresponding to higher degrees

of policy exploration. A similar quantity is involved in the construction of coresets for

active learning to promote diversity among selected examples [45]. As our second metric,

we consider windows of d examples (recall that d denotes the data space dimension) and

plot the log determinant of the Gram matrix of the examples selected in each window,

which can be used as a measure of example diversity (higher values correspond to higher

levels of example diversity) [220]. In Figure D.7a, MaxVar, APM-LR-V, APM-LR, and

Random have the lowest average maximin distances, corresponding to lower levels of

isolated unlabeled examples. Similarly, these methods generally have large initial Gram

matrix log determinants, as depicted in Figure D.7b.

The ablation of individual terms in APM-LR and direct measurement of exploitation

and exploration of each active learning method suggests that when tested on vehicle-cars,

exploration-based methods outperform methods that do not explicitly optimize for diverse

selection. While this extended analysis is limited to a single dataset, it provides evidence that

235

(a) (b)

Figure D.7: Exploration metrics for vehicle-cars: (a) maximum distance from an unlabeled
example to its closest labeled example. Smaller values indicate lower levels of unlabeled
data isolation, and correspond to higher levels of exploration. (b) Log determinant of Gram
matrix, where larger values correspond to higher levels of exploration.

the exploration term in APM-LR can lead to higher levels of performance on a real-world

dataset, where methods that do not directly account for exploration might fail.

236

REFERENCES

[1] G. Canal, Y. Diaz-Mercado, M. Egerstedt, and C. Rozell, “A low-complexity brain-
computer interface for high-complexity robot swarm control,” Submitted, 2021.

[2] G. Canal, S. Manivasagam, S. Liang, and C. Rozell, “Interactive object segmen-
tation with noisy binary inputs,” in 2018 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), © 2018 IEEE, 2018, pp. 405–409.

[3] G. Canal, S. Fenu, and C. Rozell, “Active ordinal querying for tuplewise similarity
learning,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 04, pp. 3332–3340, Apr. 2020.

[4] G. Canal, A. Massimino, M. Davenport, and C. Rozell, “Active embedding search
via noisy paired comparisons,” in Proceedings of the 36th International Conference
on Machine Learning, K. Chaudhuri and R. Salakhutdinov, Eds., ser. Proceedings
of Machine Learning Research, vol. 97, PMLR, Sep. 2019, pp. 902–911.

[5] G. H. Canal, M. R. O’Shaughnessy, C. J. Rozell, and M. A. Davenport, “Joint
estimation of trajectory and dynamics from paired comparisons,” in 2019 IEEE
8th International Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP), © 2019 IEEE, 2019, pp. 121–125.

[6] G. Canal, M. Bloch, and C. Rozell, “Feedback coding for active learning,” in
Proceedings of The 24th International Conference on Artificial Intelligence and
Statistics, A. Banerjee and K. Fukumizu, Eds., ser. Proceedings of Machine Learning
Research, vol. 130, PMLR, 13–15 Apr 2021, pp. 1468–1476.

[7] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 248–255.

[8] H. Pham, Z. Dai, Q. Xie, M.-T. Luong, and Q. V. Le, Meta pseudo labels, 2021.
arXiv: 2003.10580 [cs.LG].

[9] Y. Liu, “Active learning with support vector machine applied to gene expression
data for cancer classification,” Journal of Chemical Information and Computer
Sciences, vol. 44, no. 6, pp. 1936–1941, 2004, PMID: 15554662. eprint: https :
//doi.org/10.1021/ci049810a.

[10] M. K. Warmuth, J. Liao, G. Rätsch, M. Mathieson, S. Putta, and C. Lemmen, “Active
learning with support vector machines in the drug discovery process,” Journal of
Chemical Information and Computer Sciences, vol. 43, no. 2, pp. 667–673, 2003,
PMID: 12653536. eprint: https://doi.org/10.1021/ci025620t.

237

https://arxiv.org/abs/2003.10580
https://doi.org/10.1021/ci049810a
https://doi.org/10.1021/ci049810a
https://doi.org/10.1021/ci025620t

[11] D. Reker and G. Schneider, “Active-learning strategies in computer-assisted drug
discovery,” Drug Discovery Today, vol. 20, no. 4, pp. 458–465, 2015.

[12] T. Wang, J.-Y. Zhu, A. Torralba, and A. A. Efros, Dataset distillation, 2020. arXiv:
1811.10959 [cs.LG].

[13] “Interactive learning,” Foundations of Machine Learning Program, Simons Institute
for the Theory of Computing, 2017.

[14] X. Zhu, A. Singla, S. Zilles, and A. N. Rafferty, An overview of machine teaching,
2018. arXiv: 1801.05927 [cs.LG].

[15] C. E. Shannon, “A mathematical theory of communication,” The Bell System Tech-
nical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[16] G. A. Miller, “The magical number seven, plus or minus two: Some limits on our
capacity for processing information.,” Psychological review, vol. 63, no. 2, p. 81,
1956.

[17] A. Xu and M. Raginsky, “Information-theoretic analysis of generalization capability
of learning algorithms,” in Advances in Neural Information Processing Systems 30,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., Curran Associates, Inc., 2017, pp. 2524–2533.

[18] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “Info-
gan: Interpretable representation learning by information maximizing generative
adversarial nets,” in Advances in Neural Information Processing Systems, D. Lee, M.
Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29, Curran Associates,
Inc., 2016.

[19] Y. Chen, S. H. Hassani, A. Karbasi, and A. Krause, “Sequential information maxi-
mization: When is greedy near-optimal?” In Proceedings of The 28th Conference
on Learning Theory, P. Grünwald, E. Hazan, and S. Kale, Eds., ser. Proceedings of
Machine Learning Research, vol. 40, Paris, France: PMLR, Mar. 2015, pp. 338–363.

[20] D. J. C. MacKay, “Information-Based Objective Functions for Active Data Selection,”
Neural Computation, vol. 4, no. 4, pp. 590–604, Jul. 1992. eprint: https://direct.mit.
edu/neco/article-pdf/4/4/590/812354/neco.1992.4.4.590.pdf.

[21] W. Gao, S. Kannan, S. Oh, and P. Viswanath, “Estimating mutual information for
discrete-continuous mixtures,” in Advances in Neural Information Processing Sys-
tems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds., vol. 30, Curran Associates, Inc., 2017.

238

https://arxiv.org/abs/1811.10959
https://arxiv.org/abs/1801.05927
https://direct.mit.edu/neco/article-pdf/4/4/590/812354/neco.1992.4.4.590.pdf
https://direct.mit.edu/neco/article-pdf/4/4/590/812354/neco.1992.4.4.590.pdf

[22] O. Shayevitz and M. Feder, “Optimal feedback communication via posterior match-
ing,” IEEE Transactions on Information Theory, vol. 57, no. 3, pp. 1186–1222,
2011.

[23] C. Omar, A. Akce, M. Johnson, T. Bretl, R. Ma, E. Maclin, M. McCormick,
and T. P. Coleman, “A feedback information-theoretic approach to the design of
brain–computer interfaces,” International Journal of Human–Computer Interaction,
vol. 27, no. 1, pp. 5–23, 2010. eprint: https://doi.org/10.1080/10447318.2011.
535749.

[24] L. Lovász and S. Vempala, “The geometry of logconcave functions and sampling
algorithms,” Random Structures & Algorithms, vol. 30, no. 3, pp. 307–358, 2007.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/rsa.20135.

[25] A. Saumard and J. A. Wellner, “Log-concavity and strong log-concavity: A review,”
Statistics surveys, vol. 8, pp. 45–114, 2014, PMC4847755[pmcid].

[26] J. R. Pierce, An introduction to information theory: symbols, signals and noise.
Courier Corporation, 2012.

[27] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). USA: Wiley-Interscience, 2006, ISBN:
0471241954.

[28] C. Shannon, “The zero error capacity of a noisy channel,” IRE Transactions on
Information Theory, vol. 2, no. 3, pp. 8–19, 1956.

[29] M. Horstein, “Sequential transmission using noiseless feedback,” IEEE Transactions
on Information Theory, vol. 9, no. 3, pp. 136–143, 1963.

[30] J. Schalkwijk and T. Kailath, “A coding scheme for additive noise channels with
feedback–i: No bandwidth constraint,” IEEE Transactions on Information Theory,
vol. 12, no. 2, pp. 172–182, 1966.

[31] R. Ma and T. P. Coleman, “Generalizing the posterior matching scheme to higher
dimensions via optimal transportation,” in 2011 49th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), 2011, pp. 96–102.

[32] T. P. Coleman, “A stochastic control viewpoint on ‘posterior matching’-style feed-
back communication schemes,” in 2009 IEEE International Symposium on Informa-
tion Theory, 2009, pp. 1520–1524.

[33] B. Jedynak, P. I. Frazier, and R. Sznitman, “Twenty questions with noise: Bayes
optimal policies for entropy loss,” Journal of Applied Probability, vol. 49, no. 1,
pp. 114–136, 2012.

239

https://doi.org/10.1080/10447318.2011.535749
https://doi.org/10.1080/10447318.2011.535749
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rsa.20135

[34] T. Tsiligkaridis, B. M. Sadler, and A. O. Hero, “Collaborative 20 questions for target
localization,” IEEE Transactions on Information Theory, vol. 60, no. 4, pp. 2233–
2252, 2014.

[35] R. Castro and R. Nowak, “Active learning and sampling,” in Foundations and
Applications of Sensor Management, A. O. Hero, D. A. Castañón, D. Cochran, and
K. Kastella, Eds. Boston, MA: Springer US, 2008, pp. 177–200, ISBN: 978-0-387-
49819-5.

[36] R. Waeber, P. I. Frazier, and S. G. Henderson, “Bisection search with noisy re-
sponses,” SIAM Journal on Control and Optimization, vol. 51, no. 3, pp. 2261–2279,
2013. eprint: https://doi.org/10.1137/120861898.

[37] R. D. Nowak, “The geometry of generalized binary search,” IEEE Transactions on
Information Theory, vol. 57, no. 12, pp. 7893–7906, 2011.

[38] M. V. Burnashev and K. S. Zigangirov, “An interval estimation problem for con-
trolled observations,” Problems of Information Transmission, vol. 10, no. 3, pp. 223–
231, 1974.

[39] B. Settles, “Active learning,” Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning, vol. 6, no. 1, pp. 1–114, 2012. eprint: https://doi.org/10.2200/
S00429ED1V01Y201207AIM018.

[40] G. A. Hollinger, B. Englot, F. S. Hover, U. Mitra, and G. S. Sukhatme, “Active
planning for underwater inspection and the benefit of adaptivity,” The International
Journal of Robotics Research, vol. 32, no. 1, pp. 3–18, 2013. eprint: https://doi.org/
10.1177/0278364912467485.

[41] D. V. Lindley, “On a measure of the information provided by an experiment,” The
Annals of Mathematical Statistics, vol. 27, no. 4, pp. 986–1005, 1956.

[42] H. Chernoff, “Sequential design of experiments,” The Annals of Mathematical
Statistics, vol. 30, no. 3, pp. 755–770, 1959.

[43] K. Chaloner and I. Verdinelli, “Bayesian experimental design: A review,” Statistical
Science, vol. 10, no. 3, pp. 273–304, 1995.

[44] R. Pinsler, J. Gordon, E. Nalisnick, and J. M. Hernández-Lobato, “Bayesian batch
active learning as sparse subset approximation,” in Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32, Curran Associates, Inc., 2019.

[45] O. Sener and S. Savarese, “Active learning for convolutional neural networks: A
core-set approach,” in International Conference on Learning Representations, 2018.

240

https://doi.org/10.1137/120861898
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.1177/0278364912467485
https://doi.org/10.1177/0278364912467485

[46] S. Sinha, S. Ebrahimi, and T. Darrell, “Variational adversarial active learning,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
Oct. 2019.

[47] W. H. Beluch, T. Genewein, A. Nürnberger, and J. M. Köhler, “The power of
ensembles for active learning in image classification,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2018.

[48] Y. Gal, R. Islam, and Z. Ghahramani, “Deep Bayesian active learning with image
data,” D. Precup and Y. W. Teh, Eds., ser. Proceedings of Machine Learning Research,
vol. 70, International Convention Centre, Sydney, Australia: PMLR, Jun. 2017,
pp. 1183–1192.

[49] A. Kirsch, J. van Amersfoort, and Y. Gal, “Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning,” in Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32, Curran Associates, Inc., 2019.

[50] J. Tantiongloc, D. A. Mesa, R. Ma, S. Kim, C. H. Alzate, J. J. Camacho, V. Manian,
and T. P. Coleman, “An information and control framework for optimizing user-
compliant human–computer interfaces,” Proceedings of the IEEE, vol. 105, no. 2,
pp. 273–285, 2017.

[51] A. Akce, M. Johnson, O. Dantsker, and T. Bretl, “A brain–machine interface to navi-
gate a mobile robot in a planar workspace: Enabling humans to fly simulated aircraft
with eeg,” IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 21, no. 2, pp. 306–318, 2013.

[52] A. Akce, M. Johnson, and T. Bretl, “Remote teleoperation of an unmanned aircraft
with a brain-machine interface: Theory and preliminary results,” in 2010 IEEE
International Conference on Robotics and Automation, 2010, pp. 5322–5327.

[53] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan,
“Brain–computer interfaces for communication and control,” Clinical Neurophysiol-
ogy, vol. 113, no. 6, pp. 767–791, 2002.

[54] S. R. Soekadar, M. Witkowski, C. Gómez, E. Opisso, J. Medina, M. Cortese, M.
Cempini, M. C. Carrozza, L. G. Cohen, N. Birbaumer, and N. Vitiello, “Hybrid
eeg/eog-based brain/neural hand exoskeleton restores fully independent daily living
activities after quadriplegia,” Science Robotics, vol. 1, no. 1, 2016. eprint: https:
//robotics.sciencemag.org/content/1/1/eaag3296.full.pdf.

[55] J. L. Collinger, B. Wodlinger, J. E. Downey, W. Wang, E. C. Tyler-Kabara, D. J.
Weber, A. J. McMorland, M. Velliste, M. L. Boninger, and A. B. Schwartz, “High-

241

https://robotics.sciencemag.org/content/1/1/eaag3296.full.pdf
https://robotics.sciencemag.org/content/1/1/eaag3296.full.pdf

performance neuroprosthetic control by an individual with tetraplegia,” The Lancet,
vol. 381, no. 9866, pp. 557–564, 2013.

[56] L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel,
S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and
grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature,
vol. 485, no. 7398, pp. 372–375, May 2012.

[57] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H. Caplan,
A. Branner, D. Chen, R. D. Penn, and J. P. Donoghue, “Neuronal ensemble control
of prosthetic devices by a human with tetraplegia,” Nature, vol. 442, no. 7099,
pp. 164–171, Jul. 2006.

[58] B. Wodlinger, J. E. Downey, E. C. Tyler-Kabara, A. B. Schwartz, M. L. Boninger,
and J. L. Collinger, “Ten-dimensional anthropomorphic arm control in a human
brain-machine interface: Difficulties, solutions, and limitations,” Journal of Neural
Engineering, vol. 12, no. 1, p. 016 011, Dec. 2014.

[59] R. Leeb, D. Friedman, G. R. Muller-Putz, R. Scherer, M. Slater, and G. Pfurtscheller,
“Self-paced (asynchronous) bci control of a wheelchair in virtual environments:
A case study with a tetraplegic,” Computational intelligence and neuroscience,
vol. 2007, pp. 79 642–8, 2007.

[60] F. Galán, M. Nuttin, E. Lew, P. Ferrez, G. Vanacker, J. Philips, and J. d. R. Millán,
“A brain-actuated wheelchair: Asynchronous and non-invasive brain–computer inter-
faces for continuous control of robots,” Clinical neurophysiology, vol. 119, no. 9,
pp. 2159–2169, 2008.

[61] I. Iturrate, J. M. Antelis, A. Kubler, and J. Minguez, “A noninvasive brain-actuated
wheelchair based on a p300 neurophysiological protocol and automated navigation,”
IEEE Transactions on Robotics, vol. 25, no. 3, pp. 614–627, 2009.

[62] B. Rebsamen, E. Burdet, C. Guan, H. Zhang, C. L. Teo, Q. Zeng, C. Laugier, and
M. H. Ang, “Controlling a wheelchair indoors using thought,” IEEE Intelligent
Systems, vol. 22, no. 2, pp. 18–24, 2007.

[63] D. Huang, K. Qian, D. Fei, W. Jia, X. Chen, and O. Bai, “Electroencephalogra-
phy (eeg)-based brain–computer interface (bci): A 2-d virtual wheelchair control
based on event-related desynchronization/synchronization and state control,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 20, no. 3,
pp. 379–388, 2012.

[64] Y. Li, J. Pan, F. Wang, and Z. Yu, “A hybrid bci system combining p300 and
ssvep and its application to wheelchair control,” IEEE Transactions on Biomedical
Engineering, vol. 60, no. 11, pp. 3156–3166, 2013.

242

[65] J. Long, Y. Li, H. Wang, T. Yu, J. Pan, and F. Li, “A hybrid brain computer interface
to control the direction and speed of a simulated or real wheelchair,” IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering, vol. 20, no. 5, pp. 720–729,
2012.

[66] J. Li, J. Liang, Q. Zhao, J. Li, K. Hong, and L. Zhang, “Design of assistive wheelchair
system directly steered by human thoughts,” International journal of neural systems,
vol. 23 3, p. 1 350 013, 2013.

[67] T. Carlson and J. del R. Millan, “Brain-controlled wheelchairs: A robotic architec-
ture,” IEEE Robotics Automation Magazine, vol. 20, no. 1, pp. 65–73, 2013.

[68] R. Zhang, Y. Li, Y. Yan, H. Zhang, S. Wu, T. Yu, and Z. Gu, “Control of a wheelchair
in an indoor environment based on a brain–computer interface and automated
navigation,” IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 24, no. 1, pp. 128–139, 2016.

[69] S. Mueller, W. Cardoso, T. Freire, and M. Sarcinelli-Filho, “Brain-computer interface
based on visual evoked potentials to command autonomous robotic wheelchair,” J.
Med. Biol. Eng, vol. 30, Jan. 2010.

[70] B. Rebsamen, C. Guan, H. Zhang, C. Wang, C. Teo, M. H. Ang, and E. Burdet, “A
brain controlled wheelchair to navigate in familiar environments,” IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 6, pp. 590–598,
2010.

[71] B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Müller, and G. Curio, “The non-
invasive berlin brain–computer interface: Fast acquisition of effective performance
in untrained subjects,” NeuroImage, vol. 37, no. 2, pp. 539–550, 2007.

[72] J. R. Wolpaw, D. J. McFarland, and E. Bizzi, “Control of a two-dimensional move-
ment signal by a noninvasive brain-computer interface in humans,” Proceedings of
the National Academy of Sciences of the United States of America, vol. 101, no. 51,
pp. 17 849–17 854, 2004.

[73] B. Xia, D. An, C. Chen, H. Xie, and J. Li, “A mental switch-based asynchronous
brain-computer interface for 2d cursor control,” in 2013 35th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
2013, pp. 3101–3104.

[74] D. J. McFarland, W. A. Sarnacki, and J. R. Wolpaw, “Electroencephalographic (eeg)
control of three-dimensional movement,” Journal of neural engineering, vol. 7,
no. 3, pp. 036 007–036 007, 2010.

243

[75] J. Long, Y. Li, T. Yu, and Z. Gu, “Target selection with hybrid feature for bci-based
2-d cursor control,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 1,
pp. 132–140, 2012.

[76] L. J. Trejo, R. Rosipal, and B. Matthews, “Brain-computer interfaces for 1-d and 2-d
cursor control: Designs using volitional control of the eeg spectrum or steady-state
visual evoked potentials,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 14, no. 2, pp. 225–229, 2006.

[77] Imagining a new interface: Hands-free communication without saying a word,
https : / / tech. fb.com/imagining- a- new- interface- hands- free- communication-
without-saying-a-word/, 2020.

[78] E. Musk, “An integrated brain-machine interface platform with thousands of chan-
nels,” J Med Internet Res, vol. 21, no. 10, e16194, Oct. 2019.

[79] Nonsurgical neural interfaces could significantly expand use of neurotechnology,
https://www.darpa.mil/news-events/2018-03-16, 2018.

[80] E. J. Pratt, M. Ledbetter, R. Jiménez-Martı́nez, B. Shapiro, A. Solon, G. Z. Iwata,
S. Garber, J. Gormley, D. Decker, D. Delgadillo, A. T. Dellis, J. Phillips, G. Sundar,
J. Leung, J. Coyne, M. McKinley, G. Lopez, S. Homan, L. Marsh, M. Zhang, V.
Maurice, B. Siepser, T. Giovannoli, B. Leverett, G. Lerner, S. Seidman, V. DeLuna,
K. Wright-Freeman, J. Kates-Harbeck, T. Lasser, H. Mohseni, T. Sharp, A. Zorzos,
A. H. Lara, A. Kouhzadi, A. Ojeda, P. Chopra, Z. Bednarke, M. Henninger, and
J. K. Alford, “Kernel Flux: a whole-head 432-magnetometer optically-pumped mag-
netoencephalography (OP-MEG) system for brain activity imaging during natural
human experiences,” in Optical and Quantum Sensing and Precision Metrology,
S. M. Shahriar and J. Scheuer, Eds., International Society for Optics and Photonics,
vol. 11700, SPIE, 2021, pp. 162–179.

[81] R. Scherer, G. Muller, C. Neuper, B. Graimann, and G. Pfurtscheller, “An asyn-
chronously controlled eeg-based virtual keyboard: Improvement of the spelling rate,”
IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 979–984, 2004.

[82] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kübler,
J. Perelmouter, E. Taub, and H. Flor, “A spelling device for the paralysed,” Nature,
vol. 398, no. 6725, pp. 297–298, Mar. 1999.

[83] A. Kübler, A. Furdea, S. Halder, E. M. Hammer, F. Nijboer, and B. Kotchoubey, “A
brain–computer interface controlled auditory event-related potential (p300) spelling
system for locked-in patients,” Annals of the New York Academy of Sciences,
vol. 1157, no. 1, pp. 90–100, 2009. eprint: https://nyaspubs.onlinelibrary.wiley.com/
doi/pdf/10.1111/j.1749-6632.2008.04122.x.

244

https://tech.fb.com/imagining-a-new-interface-hands-free-communication-without-saying-a-word/
https://tech.fb.com/imagining-a-new-interface-hands-free-communication-without-saying-a-word/
https://www.darpa.mil/news-events/2018-03-16
https://nyaspubs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1749-6632.2008.04122.x
https://nyaspubs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1749-6632.2008.04122.x

[84] M. Cheng, X. Gao, S. Gao, and D. Xu, “Design and implementation of a brain-
computer interface with high transfer rates,” IEEE Transactions on Biomedical
Engineering, vol. 49, no. 10, pp. 1181–1186, 2002.

[85] J. Meng, S. Zhang, A. Bekyo, J. Olsoe, B. Baxter, and B. He, “Noninvasive electroen-
cephalogram based control of a robotic arm for reach and grasp tasks,” Scientific
Reports, vol. 6, no. 1, p. 38 565, Dec. 2016.

[86] B. J. Edelman, J. Meng, D. Suma, C. Zurn, E. Nagarajan, B. S. Baxter, C. C.
Cline, and B. He, “Noninvasive neuroimaging enhances continuous neural tracking
for robotic device control,” Science Robotics, vol. 4, no. 31, 2019. eprint: https:
//robotics.sciencemag.org/content/4/31/eaaw6844.full.pdf.

[87] K. LaFleur, K. Cassady, A. Doud, K. Shades, E. Rogin, and B. He, “Quadcopter con-
trol in three-dimensional space using a noninvasive motor imagery-based brain–computer
interface,” Journal of Neural Engineering, vol. 10, no. 4, p. 046 003, Jun. 2013.

[88] G. K. Karavas, D. T. Larsson, and P. Artemiadis, “A hybrid bmi for control of
robotic swarms: Preliminary results,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017, pp. 5065–5075.

[89] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent networks.
Princeton University Press, 2010, vol. 33.

[90] Y. Diaz-Mercado, S. G. Lee, and M. Egerstedt, “Distributed dynamic density cover-
age for human-swarm interactions,” in 2015 American Control Conference (ACC),
2015, pp. 353–358.

[91] X. Xu and Y. Diaz-Mercado, “Multi-agent control using coverage over time-varying
domains,” in 2020 American Control Conference (ACC), IEEE, 2020, pp. 2030–
2035.

[92] G. Pfurtscheller and C. Neuper, “Motor imagery activates primary sensorimotor
area in humans,” Neuroscience Letters, vol. 239, no. 2, pp. 65–68, 1997.

[93] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-r. Muller, “Optimizing
spatial filters for robust eeg single-trial analysis,” IEEE Signal Processing Magazine,
vol. 25, no. 1, pp. 41–56, 2008.

[94] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, “A review of
classification algorithms for EEG-based brain–computer interfaces,” Journal of
Neural Engineering, vol. 4, no. 2, R1–R13, Jan. 2007.

[95] L. D. Brown, T. T. Cai, and A. DasGupta, “Interval estimation for a binomial
proportion,” Statistical Science, vol. 16, no. 2, pp. 101–117, 2001.

245

https://robotics.sciencemag.org/content/4/31/eaaw6844.full.pdf
https://robotics.sciencemag.org/content/4/31/eaaw6844.full.pdf

[96] C. Omar, M. Johnson, T. W. Bretl, and T. P. Coleman, “Querying the user properly
for high-performance brain-machine interfaces: Recursive estimation, control, and
feedback information-theoretic perspectives,” in 2008 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, 2008, pp. 5216–5219.

[97] F. Dubost, L. Peter, C. Rupprecht, B. G. Becker, and N. Navab, “Hands-free segmen-
tation of medical volumes via binary inputs,” in Deep Learning and Data Labeling
for Medical Applications, G. Carneiro, D. Mateus, L. Peter, A. Bradley, J. M. R. S.
Tavares, V. Belagiannis, J. P. Papa, J. C. Nascimento, M. Loog, Z. Lu, J. S. Cardoso,
and J. Cornebise, Eds., Cham: Springer International Publishing, 2016, pp. 259–268,
ISBN: 978-3-319-46976-8.

[98] M. Sadeghi, G. Tien, G. Hamarneh, and M. S. A. M.D., “Hands-free interactive
image segmentation using eyegaze,” in Medical Imaging 2009: Computer-Aided
Diagnosis, N. Karssemeijer and M. L. Giger, Eds., International Society for Optics
and Photonics, vol. 7260, SPIE, 2009, pp. 441–450.

[99] G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A. Schlogl, B.
Obermaier, and M. Pregenzer, “Current trends in graz brain-computer interface
(bci) research,” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2,
pp. 216–219, 2000.

[100] J. MacCalla and A. Howard, “A plush switch for accessing tablet-based applications
for children with mild to severe motor limitations,” in Rehabilitation Eng. and
Technology Soc. of North America (RESNA) Annu. Conf., 2014.

[101] H. Park, M. Kiani, H.-M. Lee, J. Kim, J. Block, B. Gosselin, and M. Ghovanloo, “A
wireless magnetoresistive sensing system for an intraoral tongue-computer interface,”
IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 6, pp. 571–585,
2012.

[102] Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal boundary region
segmentation of objects in n-d images,” in Proceedings Eighth IEEE International
Conference on Computer Vision. ICCV 2001, vol. 1, 2001, 105–112 vol.1.

[103] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1124–1137, 2004.

[104] D. Freedman and T. Zhang, “Interactive graph cut based segmentation with shape
priors,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), vol. 1, 2005, 755–762 vol. 1.

246

[105] J. Ning, L. Zhang, D. Zhang, and C. Wu, “Interactive image segmentation by
maximal similarity based region merging,” Pattern Recognition, vol. 43, no. 2,
pp. 445–456, 2010, Interactive Imaging and Vision.

[106] C. Rother, V. Kolmogorov, and A. Blake, “”grabcut”: Interactive foreground extrac-
tion using iterated graph cuts,” ACM Trans. Graph., vol. 23, no. 3, pp. 309–314,
Aug. 2004.

[107] A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr, “Interactive image segmenta-
tion using an adaptive gmmrf model,” in Computer Vision - ECCV 2004, T. Pajdla
and J. Matas, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 428–
441, ISBN: 978-3-540-24670-1.

[108] V. Lempitsky, P. Kohli, C. Rother, and T. Sharp, “Image segmentation with a
bounding box prior,” in 2009 IEEE 12th International Conference on Computer
Vision, 2009, pp. 277–284.

[109] L. Marchesotti, C. Cifarelli, and G. Csurka, “A framework for visual saliency
detection with applications to image thumbnailing,” in 2009 IEEE 12th International
Conference on Computer Vision, 2009, pp. 2232–2239.

[110] H. Jiang, J. Wang, Z. Yuan, T. Liu, N. Zheng, and S. Li, “Automatic salient object
segmentation based on context and shape prior.,” in BMVC, vol. 6, 2011, p. 9.

[111] C. Rupprecht, L. Peter, and N. Navab, “Image segmentation in twenty questions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2015.

[112] D.-J. Chen, H.-T. Chen, and L.-W. Chang, “Interactive 1-bit feedback segmentation
using transductive inference,” Machine Vision and Applications, vol. 29, no. 4,
pp. 617–631, May 2018.

[113] ——, “Interactive segmentation from 1-bit feedback,” in Computer Vision – ACCV
2016, S.-H. Lai, V. Lepetit, K. Nishino, and Y. Sato, Eds., Cham: Springer Interna-
tional Publishing, 2017, pp. 261–274, ISBN: 978-3-319-54181-5.

[114] L. R. Dice, “Measures of the amount of ecologic association between species,”
Ecology, vol. 26, no. 3, pp. 297–302, 1945. eprint: https://esajournals.onlinelibrary.
wiley.com/doi/pdf/10.2307/1932409.

[115] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in Computer Vision –
ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., Cham: Springer
International Publishing, 2014, pp. 740–755, ISBN: 978-3-319-10602-1.

247

https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.2307/1932409
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.2307/1932409

[116] K. G. Jamieson and R. Nowak, “Active ranking using pairwise comparisons,” in
Advances in Neural Information Processing Systems, J. Shawe-Taylor, R. Zemel,
P. Bartlett, F. Pereira, and K. Q. Weinberger, Eds., vol. 24, Curran Associates, Inc.,
2011.

[117] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning
from demonstration,” Robotics and Autonomous Systems, vol. 57, no. 5, pp. 469–483,
2009.

[118] V. Ferrari, T. Tuytelaars, and L. Van Gool, “Simultaneous object recognition and
segmentation by image exploration,” in Computer Vision - ECCV 2004, T. Pajdla
and J. Matas, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 40–54,
ISBN: 978-3-540-24670-1.

[119] L. Yang, R. Jin, L. Mummert, R. Sukthankar, A. Goode, B. Zheng, S. C. Hoi,
and M. Satyanarayanan, “A boosting framework for visuality-preserving distance
metric learning and its application to medical image retrieval,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 32, no. 1, pp. 30–44, 2010.

[120] D. Parikh and K. Grauman, “Relative attributes,” in 2011 International Conference
on Computer Vision, 2011, pp. 503–510.

[121] O. Tamuz, C. Liu, S. Belongie, O. Shamir, and A. Kalai, “Adaptively learning the
crowd kernel,” in Proceedings of the 28th International Conference on Machine
Learning (ICML-11), L. Getoor and T. Scheffer, Eds., ser. ICML ’11, Bellevue,
Washington, USA: ACM, Jun. 2011, pp. 673–680, ISBN: 978-1-4503-0619-5.

[122] L. van der Maaten and K. Weinberger, “Stochastic triplet embedding,” in 2012 IEEE
International Workshop on Machine Learning for Signal Processing, 2012, pp. 1–6.

[123] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,” in Similarity-
Based Pattern Recognition, A. Feragen, M. Pelillo, and M. Loog, Eds., Cham:
Springer International Publishing, 2015, pp. 84–92, ISBN: 978-3-319-24261-3.

[124] B. Fernando, E. Gavves, D. Muselet, and T. Tuytelaars, “Learning to rank based on
subsequences,” in Proceedings of the IEEE International Conference on Computer
Vision (ICCV), Dec. 2015.

[125] L. Liang and K. Grauman, “Beyond comparing image pairs: Setwise active learning
for relative attributes,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jun. 2014.

[126] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li, “Learning to rank: From pairwise
approach to listwise approach,” in Proceedings of the 24th International Conference

248

on Machine Learning, ser. ICML ’07, Corvalis, Oregon, USA: Association for
Computing Machinery, 2007, pp. 129–136, ISBN: 9781595937933.

[127] K. G. Jamieson and R. D. Nowak, “Low-dimensional embedding using adaptively
selected ordinal data,” in 2011 49th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), 2011, pp. 1077–1084.

[128] E. Y. Liu, Z. Guo, X. Zhang, V. Jojic, and W. Wang, “Metric learning from relative
comparisons by minimizing squared residual,” in 2012 IEEE 12th International
Conference on Data Mining, 2012, pp. 978–983.

[129] N. Chater and G. D. Brown, “Scale-invariance as a unifying psychological principle,”
Cognition, vol. 69, no. 3, B17–B24, 1999.

[130] L. Jain, K. G. Jamieson, and R. Nowak, “Finite sample prediction and recovery
bounds for ordinal embedding,” in Advances in Neural Information Processing
Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29,
Curran Associates, Inc., 2016.

[131] H. Yu, “Svm selective sampling for ranking with application to data retrieval,” in
Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, ser. KDD ’05, Chicago, Illinois, USA: Association for
Computing Machinery, 2005, pp. 354–363, ISBN: 159593135X.

[132] B. Qian, X. Wang, F. Wang, H. Li, J. Ye, and I. Davidson, “Active learning from
relative queries,” in Proceedings of the Twenty-Third International Joint Confer-
ence on Artificial Intelligence, ser. IJCAI ’13, Beijing, China: AAAI Press, 2013,
pp. 1614–1620, ISBN: 9781577356332.

[133] C. Cao and H.-Z. Ai, “Facial similarity learning with humans in the loop,” Journal
of Computer Science and Technology, vol. 30, no. 3, pp. 499–510, May 2015.

[134] G. Patterson, G. Van Horn, S. Belongie, P. Perona, and J. Hays, “Tropel: Crowd-
sourcing detectors with minimal training,” Proceedings of the AAAI Conference on
Human Computation and Crowdsourcing, vol. 3, no. 1, Sep. 2015.

[135] M. Wilber, I. Kwak, and S. Belongie, “Cost-effective hits for relative similarity
comparisons,” Proceedings of the AAAI Conference on Human Computation and
Crowdsourcing, vol. 2, no. 1, Sep. 2014.

[136] N. Houlsby, F. Huszar, Z. Ghahramani, and J. Hernández-lobato, “Collaborative
gaussian processes for preference learning,” in Advances in Neural Information
Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
Eds., vol. 25, Curran Associates, Inc., 2012.

249

[137] H. Stern, “Models for distributions on permutations,” Journal of the American
Statistical Association, vol. 85, no. 410, pp. 558–564, 1990. eprint: https://www.
tandfonline.com/doi/pdf/10.1080/01621459.1990.10476235.

[138] M. Lohaus, P. Hennig, and U. von Luxburg, Uncertainty estimates for ordinal
embeddings, 2019. arXiv: 1906.11655 [cs.LG].

[139] R. A. Bradley and M. E. Terry, “Rank analysis of incomplete block designs: I. the
method of paired comparisons,” Biometrika, vol. 39, no. 3/4, pp. 324–345, 1952.

[140] J. Guiver and E. Snelson, “Bayesian inference for plackett-luce ranking models,”
in Proceedings of the 26th Annual International Conference on Machine Learning,
ser. ICML ’09, Montreal, Quebec, Canada: Association for Computing Machinery,
2009, pp. 377–384, ISBN: 9781605585161.

[141] M. Wilber, I. S. Kwak, D. Kriegman, and S. Belongie, “Learning concept em-
beddings with combined human-machine expertise,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Dec. 2015.

[142] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30, no. 1/2,
pp. 81–93, 1938.

[143] P. Kingston and M. Egerstedt, “Comparing apples and oranges through partial orders:
An empirical approach,” in 2009 American Control Conference, 2009, pp. 5434–
5439.

[144] J. Baldridge and A. Palmer, “How well does active learning actually work? Time-
based evaluation of cost-reduction strategies for language documentation.,” in Pro-
ceedings of the 2009 Conference on Empirical Methods in Natural Language Pro-
cessing, Singapore: Association for Computational Linguistics, Aug. 2009, pp. 296–
305.

[145] H. A. David, The method of paired comparisons. London, 1963, vol. 12.

[146] C. H. Coombs, “Psychological scaling without a unit of measurement.,” Psychologi-
cal review, vol. 57, no. 3, p. 145, 1950.

[147] Y. Guo, P. Tian, J. Kalpathy-Cramer, S. Ostmo, J. P. Campbell, M. F. Chiang, D.
Erdogmus, J. G. Dy, and S. Ioannidis, “Experimental design under the bradley-terry
model.,” in IJCAI, 2018, pp. 2198–2204.

[148] K. Jamieson, S. Katariya, A. Deshpande, and R. Nowak, “Sparse Dueling Bandits,”
in Proceedings of the Eighteenth International Conference on Artificial Intelligence
and Statistics, G. Lebanon and S. V. N. Vishwanathan, Eds., ser. Proceedings of

250

https://www.tandfonline.com/doi/pdf/10.1080/01621459.1990.10476235
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1990.10476235
https://arxiv.org/abs/1906.11655

Machine Learning Research, vol. 38, San Diego, California, USA: PMLR, Sep.
2015, pp. 416–424.

[149] F. Wauthier, M. Jordan, and N. Jojic, “Efficient ranking from pairwise comparisons,”
in Proceedings of the 30th International Conference on Machine Learning, S. Das-
gupta and D. McAllester, Eds., ser. Proceedings of Machine Learning Research,
vol. 28, Atlanta, Georgia, USA: PMLR, 17–19 Jun 2013, pp. 109–117.

[150] Y. Chen and C. Suh, “Spectral mle: Top-k rank aggregation from pairwise compar-
isons,” in Proceedings of the 32nd International Conference on Machine Learning,
F. Bach and D. Blei, Eds., ser. Proceedings of Machine Learning Research, vol. 37,
Lille, France: PMLR, Jul. 2015, pp. 371–380.

[151] B. Eriksson, “Learning to top-k search using pairwise comparisons,” in Proceedings
of the Sixteenth International Conference on Artificial Intelligence and Statistics,
C. M. Carvalho and P. Ravikumar, Eds., ser. Proceedings of Machine Learning
Research, vol. 31, Scottsdale, Arizona, USA: PMLR, 29 Apr–01 May 2013, pp. 265–
273.

[152] N. B. Shah and M. J. Wainwright, “Simple, robust and optimal ranking from pairwise
comparisons.,” Journal of machine learning research, vol. 18, pp. 199–1, 2017.

[153] N. Shah, S. Balakrishnan, J. Bradley, A. Parekh, K. Ramchandran, and M. Wain-
wright, “Estimation from Pairwise Comparisons: Sharp Minimax Bounds with
Topology Dependence,” in Proceedings of the Eighteenth International Conference
on Artificial Intelligence and Statistics, G. Lebanon and S. V. N. Vishwanathan, Eds.,
ser. Proceedings of Machine Learning Research, vol. 38, San Diego, California,
USA: PMLR, Sep. 2015, pp. 856–865.

[154] S. Negahban, S. Oh, and D. Shah, “Iterative ranking from pair-wise comparisons,”
in Advances in Neural Information Processing Systems, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds., 2012, pp. 2474–2482.

[155] L. Qian, J. Gao, and H. V. Jagadish, “Learning user preferences by adaptive pairwise
comparison,” Proc. VLDB Endow., vol. 8, no. 11, pp. 1322–1333, Jul. 2015.

[156] B. Eric, N. Freitas, and A. Ghosh, “Active preference learning with discrete choice
data,” in Advances in Neural Information Processing Systems, J. Platt, D. Koller,
Y. Singer, and S. Roweis, Eds., vol. 20, Curran Associates, Inc., 2008.

[157] W. Chu and Z. Ghahramani, “Preference learning with gaussian processes,” in
Proceedings of the 22nd International Conference on Machine Learning, ser. ICML
’05, Bonn, Germany: Association for Computing Machinery, 2005, pp. 137–144,
ISBN: 1595931805.

251

[158] A. K. Massimino and M. A. Davenport, “As you like it: Localization via paired
comparisons,” arXiv preprint arXiv:1802.10489, 2018.

[159] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,
2004.

[160] S. Prasad, “Certain relations between mutual information and fidelity of statistical
estimation,” arXiv preprint arXiv:1010.1508, 2010.

[161] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, 2014, pp. 2672–2680.

[162] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt,
M. Brubaker, J. Guo, P. Li, and A. Riddell, “Stan: A probabilistic programming
language,” Journal of statistical software, vol. 76, no. 1, 2017.

[163] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, Handbook of markov chain monte
carlo. CRC press, 2011.

[164] L. Wu, C.-J. Hsieh, and J. Sharpnack, “Large-scale collaborative ranking in near-
linear time,” in Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’17, Halifax, NS, Canada:
Association for Computing Machinery, 2017, pp. 515–524, ISBN: 9781450348874.

[165] M. A. Davenport, “Lost without a compass: Nonmetric triangulation and landmark
multidimensional scaling,” in 2013 5th IEEE International Workshop on Compu-
tational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2013, pp. 13–
16.

[166] M. R. O’Shaughnessy and M. A. Davenport, “Localizing users and items from paired
comparisons,” in 2016 IEEE 26th International Workshop on Machine Learning for
Signal Processing (MLSP), 2016, pp. 1–6.

[167] A. Smith, “Novel approach to nonlinear/non-gaussian bayesian state estimation,”
IEE Proceedings F (Radar and Signal Processing), vol. 140, 107–113(6), 2 Apr.
1993.

[168] C. Frowd, V. Bruce, M. Pitchford, C. Gannon, M. Robinson, C. Tredoux, J. Park,
A. Mcintyre, and P. J. B. Hancock, “Evolving the face of a criminal: How to search
a face space more effectively,” Soft Computing, vol. 15, no. 1, pp. 61–70, Jan. 2011.

[169] E. E. Ventura, J. N. Davis, and M. I. Goran, “Sugar content of popular sweetened
beverages based on objective laboratory analysis: Focus on fructose content,” Obe-

252

sity, vol. 19, no. 4, pp. 868–874, 2011. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1038/oby.2010.255.

[170] M. Naghshvar, T. Javidi, and K. Chaudhuri, “Bayesian active learning with non-
persistent noise,” IEEE Transactions on Information Theory, vol. 61, no. 7, pp. 4080–
4098, 2015.

[171] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel, Bayesian active learning
for classification and preference learning, 2011. arXiv: 1112.5745 [stat.ML].

[172] E. Arias-Castro, E. J. Candes, and M. A. Davenport, “On the fundamental limits
of adaptive sensing,” IEEE Transactions on Information Theory, vol. 59, no. 1,
pp. 472–481, 2013.

[173] R. M. Castro and R. D. Nowak, “Minimax bounds for active learning,” IEEE
Transactions on Information Theory, vol. 54, no. 5, pp. 2339–2353, 2008.

[174] Y. Yang and M. Loog, “A benchmark and comparison of active learning for logistic
regression,” Pattern Recognition, vol. 83, pp. 401–415, 2018.

[175] S. Tong and D. Koller, “Support vector machine active learning with applications to
text classification,” Journal of machine learning research, vol. 2, no. Nov, pp. 45–66,
2001.

[176] C. Zhang, J. Shen, and P. Awasthi, Efficient active learning of sparse halfspaces
with arbitrary bounded noise, 2020. arXiv: 2002.04840 [cs.LG].

[177] J. Singh, O. Dabeer, and U. Madhow, “On the limits of communication with low-
precision analog-to-digital conversion at the receiver,” IEEE Transactions on Com-
munications, vol. 57, no. 12, pp. 3629–3639, 2009.

[178] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein gan, 2017. arXiv: 1701.07875
[stat.ML].

[179] C. Villani, Optimal transport: old and new. Springer Science & Business Media,
2008, vol. 338.

[180] C. M. Bishop, Pattern recognition and machine learning, ser. Information science
and statistics. New York, NY: Springer, 2006, Softcover published in 2016.

[181] S. Dasgupta, “Two faces of active learning,” Theoretical Computer Science, vol. 412,
no. 19, pp. 1767–1781, 2011, Algorithmic Learning Theory (ALT 2009).

253

https://onlinelibrary.wiley.com/doi/pdf/10.1038/oby.2010.255
https://onlinelibrary.wiley.com/doi/pdf/10.1038/oby.2010.255
https://arxiv.org/abs/1112.5745
https://arxiv.org/abs/2002.04840
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875

[182] A. Beygelzimer, S. Dasgupta, and J. Langford, “Importance weighted active learn-
ing,” in Proceedings of the 26th International Conference on Machine Learning,
L. Bottou and M. Littman, Eds., Montreal: Omnipress, Jun. 2009, pp. 49–56.

[183] S. Farquhar, Y. Gal, and T. Rainforth, “On statistical bias in active learning: How
and when to fix it,” in International Conference on Learning Representations, 2021.

[184] S. Dasgupta and D. Hsu, “Hierarchical sampling for active learning,” A. McCallum
and S. Roweis, Eds., pp. 208–215, 2008.

[185] S.-j. Huang, R. Jin, and Z.-H. Zhou, “Active learning by querying informative and
representative examples,” in Advances in Neural Information Processing Systems
23, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta,
Eds., Curran Associates, Inc., 2010, pp. 892–900.

[186] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “Liblinear: A
library for large linear classification,” J. Mach. Learn. Res., vol. 9, pp. 1871–1874,
Jun. 2008.

[187] T. S. Jaakkola and M. I. Jordan, “Bayesian parameter estimation via variational
methods,” Statistics and Computing, vol. 10, no. 1, pp. 25–37, Jan. 2000.

[188] D. Dua and C. Graff, UCI machine learning repository, 2017.

[189] R. Blahut, “Computation of channel capacity and rate-distortion functions,” IEEE
Transactions on Information Theory, vol. 18, no. 4, pp. 460–473, 1972.

[190] S. Arimoto, “An algorithm for computing the capacity of arbitrary discrete memory-
less channels,” IEEE Transactions on Information Theory, vol. 18, no. 1, pp. 14–20,
1972.

[191] G. Peyré and M. Cuturi, “Computational optimal transport: With applications to
data science,” Foundations and Trends® in Machine Learning, vol. 11, no. 5-6,
pp. 355–607, 2019.

[192] M. Gastpar, B. Rimoldi, and M. Vetterli, “To code, or not to code: Lossy source-
channel communication revisited,” IEEE Transactions on Information Theory,
vol. 49, no. 5, pp. 1147–1158, 2003.

[193] A. Ben-Yishai and O. Shayevitz, “Interactive schemes for the awgn channel with
noisy feedback,” IEEE Transactions on Information Theory, vol. 63, no. 4, pp. 2409–
2427, 2017.

254

[194] J. Wu and A. Anastasopoulos, “Zero-rate achievability of posterior matching schemes
for channels with memory,” in 2016 IEEE International Symposium on Information
Theory (ISIT), 2016, pp. 2384–2388.

[195] T. Koch and A. Lapidoth, “At low snr, asymmetric quantizers are better,” IEEE
Transactions on Information Theory, vol. 59, no. 9, pp. 5421–5445, 2013.

[196] R. Mathar and M. Dörpinghaus, “Threshold optimization for capacity-achieving
discrete input one-bit output quantization,” in 2013 IEEE International Symposium
on Information Theory, 2013, pp. 1999–2003.

[197] K. E. Train, Discrete choice methods with simulation. Cambridge university press,
2009.

[198] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,” in
Advances in Neural Information Processing Systems, C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds., vol. 26, Curran Associates,
Inc., 2013.

[199] J. Lee, M. Dabagia, E. Dyer, and C. Rozell, “Hierarchical optimal transport for
multimodal distribution alignment,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and
R. Garnett, Eds., vol. 32, Curran Associates, Inc., 2019.

[200] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and M. Egerstedt,
“The robotarium: A remotely accessible swarm robotics research testbed,” in 2017
IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 1699–
1706.

[201] D. Pickem, M. Lee, and M. Egerstedt, “The gritsbot in its natural habitat - a multi-
robot testbed,” in 2015 IEEE International Conference on Robotics and Automation
(ICRA), 2015, pp. 4062–4067.

[202] S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote, and M. Egerst-
edt, “The robotarium: Globally impactful opportunities, challenges, and lessons
learned in remote-access, distributed control of multirobot systems,” IEEE Control
Systems Magazine, vol. 40, no. 1, pp. 26–44, 2020.

[203] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile
sensing networks,” IEEE Transactions on robotics and Automation, vol. 20, no. 2,
pp. 243–255, 2004.

[204] R. Olfati-Saber, “Near-identity diffeomorphisms and exponential/spl epsi/-tracking
and/spl epsi/-stabilization of first-order nonholonomic se (2) vehicles,” in Proceed-

255

ings of the 2002 american control conference (ieee cat. no. ch37301), IEEE, vol. 6,
2002, pp. 4690–4695.

[205] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, “Optimal spatial filtering of sin-
gle trial eeg during imagined hand movement,” IEEE Transactions on Rehabilitation
Engineering, vol. 8, no. 4, pp. 441–446, 2000.

[206] J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, “Designing optimal spatial fil-
ters for single-trial eeg classification in a movement task,” Clinical Neurophysiology,
vol. 110, no. 5, pp. 787–798, 1999.

[207] C. Guger, H. Ramoser, and G. Pfurtscheller, “Real-time eeg analysis with subject-
specific spatial patterns for a brain-computer interface (bci),” IEEE Transactions on
Rehabilitation Engineering, vol. 8, no. 4, pp. 447–456, 2000.

[208] D. J. McFarland, L. M. McCane, S. V. David, and J. R. Wolpaw, “Spatial filter
selection for eeg-based communication,” Electroencephalography and Clinical
Neurophysiology, vol. 103, no. 3, pp. 386–394, 1997.

[209] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: data
mining, inference, and prediction. Springer Science & Business Media, 2009.

[210] C. Neuper, A. Schlögl, and G. Pfurtscheller, “Enhancement of left-right sensorimotor
eeg differences during feedback-regulated motor imagery,” Journal of Clinical
Neurophysiology, vol. 16, no. 4, 1999.

[211] Y. Aflalo and R. Kimmel, “Spectral multidimensional scaling,” Proceedings of the
National Academy of Sciences, vol. 110, no. 45, pp. 18 052–18 057, 2013. eprint:
https://www.pnas.org/content/110/45/18052.full.pdf.

[212] A. Marsiglietti and V. Kostina, “A lower bound on the differential entropy of log-
concave random vectors with applications,” Entropy, vol. 20, no. 3, 2018.

[213] S. G. Bobkov and M. M. Madiman, “On the problem of reversibility of the entropy
power inequality,” in Limit Theorems in Probability, Statistics and Number Theory, P.
Eichelsbacher, G. Elsner, H. Kösters, M. Löwe, F. Merkl, and S. Rolles, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 61–74, ISBN: 978-3-642-36068-8.

[214] R. Durrett, Probability: theory and examples. Cambridge university press, 2010.

[215] A. R. Klivans, P. M. Long, and A. K. Tang, “Baum’s algorithm learns intersections
of halfspaces with respect to log-concave distributions,” in Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques, I. Dinur, K.
Jansen, J. Naor, and J. Rolim, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 588–600, ISBN: 978-3-642-03685-9.

256

https://www.pnas.org/content/110/45/18052.full.pdf

[216] Q. Mérigot, “A multiscale approach to optimal transport,” Computer Graphics
Forum, vol. 30, no. 5, pp. 1583–1592, 2011. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1111/j.1467-8659.2011.02032.x.

[217] A. Winkelbauer, Moments and absolute moments of the normal distribution, 2014.
arXiv: 1209.4340 [math.ST].

[218] J. Siebert, “Vehicle recognition using rule based methods,” Turing Institute, Glasgow,
Project Report, 1987.

[219] Y. Ma, R. Nowak, P. Rigollet, X. Zhang, and X. Zhu, Teacher improves learning by
selecting a training subset, 2018. arXiv: 1802.08946 [stat.ML].

[220] J. T. Ash, C. Zhang, A. Krishnamurthy, J. Langford, and A. Agarwal, “Deep batch
active learning by diverse, uncertain gradient lower bounds,” in International Con-
ference on Learning Representations, 2020.

257

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.02032.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.02032.x
https://arxiv.org/abs/1209.4340
https://arxiv.org/abs/1802.08946

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	2 | Background
	Mathematical Preliminaries
	Information Theory, Entropy, and Mutual Information
	Channel Coding Theory
	Interactive Machine Learning

	3 | Interactive Brain-computer Interfacing for High-complexity Effector Control
	Tradeoffs in Brain-Computer Interfacing
	Refining End Effector Behavior
	Dictionary Sorting Proficiency
	Full System Evaluation
	Generalizing Performance Tradeoffs
	Discussion

	4 | Interactive Object Segmentation with Noisy Binary Inputs
	Interactive Image Segmentation
	Methods
	Results
	Discussion

	5 | Active Ordinal Querying for Tuplewise Similarity Learning
	Relative Similarity Learning
	Related Work
	Methods
	Experiments
	Discussion

	6 | Active Embedding Search via Noisy Paired Comparisons
	Preference Searching with Paired Comparisons
	Background
	Query Selection
	Results
	Extension to Ideal Point Estimation with Dynamics
	Discussion

	7 | Feedback Coding for Active Learning
	Related Work
	Active Learning as a Communications Model
	APM in Logistic Regression
	Experimental Results
	Discussion

	8 | Conclusions and Future Work
	Appendices
	A | Methods and Supplementary Details for One-bit Human-Computer Interaction
	B | Experimental Details in Tuplewise Similarity Learning
	C | Proofs and Additional Details in Pairwise Search
	D | Proofs and Additional Details in Feedback Coding for Active Learning

	References

